Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

The synergy of panobinostat plus doxorubicin in acute myeloid leukemia suggests a role for HDAC inhibitors in the control of DNA repair

Abstract

Acute myeloid leukemia (AML) is a clonal disorder characterized by the accumulation of myeloid blasts in the bone marrow. Here, we report the effects of the novel histone deacetylase inhibitor panobinostat (LBH589) in combination with doxorubicin on AML cells. Panobinostat exhibited potent anti-AML activity in all AML cell lines tested and in primary AML cells from patients (IC50<20 nM). In addition, panobinostat potentiated the action of several standard-of-care anti-AML compounds, particularly, doxorubicin. The molecular effects induced by panobinostat and doxorubicin treatment were investigated by analyzing gene expression, cell cycle, apoptosis and signaling pathways. Analyses of gene expression profiles identified 588 genes whose expression was exclusively affected by the combination of panobinostat and doxorubicin. The combination induced AML cell death by an increase in the mitochondrial outer membrane permeability and release of cytochrome c from the mitochondria, resulting in caspase-dependent apoptosis and accompanied by the upregulation of Bax, Bak and, particularly, Bad. The drug combination provoked a strong activation of a DNA damage response, indicating that this combination may trigger cell death by a mechanism that induced DNA double-strand breaks. These data indicate that the combination of panobinostat and doxorubicin may be an effective therapy for the treatment of AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Estey E, Dohner H . Acute myeloid leukaemia. Lancet 2006; 368: 1894–1907.

    Article  Google Scholar 

  2. Tallman MS, Gilliland DG, Rowe JM . Drug therapy for acute myeloid leukemia. Blood 2005; 106: 1154–1163.

    Article  CAS  Google Scholar 

  3. Yates JW, Wallace Jr HJ, Ellison RR, Holland JF . Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother Rep 1973; 57: 485–488.

    CAS  PubMed  Google Scholar 

  4. Jones LK, Saha V . Chromatin modification, leukaemia and implications for therapy. Br J Haematol 2002; 118: 714–727.

    Article  Google Scholar 

  5. Caron C, Boyault C, Khochbin S . Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. Bioessays 2005; 27: 408–415.

    Article  CAS  Google Scholar 

  6. Sengupta N, Seto E . Regulation of histone deacetylase activities. J Cell Biochem 2004; 93: 57–67.

    Article  CAS  Google Scholar 

  7. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK . Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001; 1: 194–202.

    Article  CAS  Google Scholar 

  8. Timmermann S, Lehrmann H, Polesskaya A, Harel-Bellan A . Histone acetylation and disease. Cell Mol Life Sci 2001; 58: 728–736.

    Article  CAS  Google Scholar 

  9. Dokmanovic M, Clarke C, Marks PA . Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 2007; 5: 981–989.

    Article  CAS  Google Scholar 

  10. Xu WS, Parmigiani RB, Marks PA . Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 2007; 26: 5541–5552.

    Article  CAS  Google Scholar 

  11. Garcia-Manero G, Yang H, Bueso-Ramos C, Ferrajoli A, Cortes J, Wierda WG et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 2008; 111: 1060–1066.

    Article  CAS  Google Scholar 

  12. Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC . Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 2005; 45: 495–528.

    Article  CAS  Google Scholar 

  13. Maiso P, Carvajal-Vergara X, Ocio EM, Lopez-Perez R, Mateo G, Gutierrez N et al. The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance. Cancer Res 2006; 66: 5781–5789.

    Article  CAS  Google Scholar 

  14. Miller TA, Witter DJ, Belvedere S . Histone deacetylase inhibitors. J Med Chem 2003; 46: 5097–5116.

    Article  CAS  Google Scholar 

  15. Colado E, varez-Fernandez S, Maiso P, Martin-Sanchez J, Vidriales MB, Garayoa M et al. The effect of the proteasome inhibitor bortezomib on acute myeloid leukemia cells and drug resistance associated with the CD34+ immature phenotype. Haematologica 2008; 93: 57–66.

    Article  CAS  Google Scholar 

  16. Chou TC, Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  Google Scholar 

  17. Chau BN, Cheng EH, Kerr DA, Hardwick JM . Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1. Mol Cell 2000; 6: 31–40.

    Article  CAS  Google Scholar 

  18. Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B . The biochemistry of programmed cell death. FASEB J 1995; 9: 1277–1287.

    Article  CAS  Google Scholar 

  19. Huang Y, Nakada S, Ishiko T, Utsugisawa T, Datta R, Kharbanda S et al. Role for caspase-mediated cleavage of Rad51 in induction of apoptosis by DNA damage. Mol Cell Biol 1999; 19: 2986–2997.

    Article  CAS  Google Scholar 

  20. Amin HM, Saeed S, Alkan S . Histone deacetylase inhibitors induce caspase-dependent apoptosis and downregulation of daxx in acute promyelocytic leukaemia with t(15;17). Br J Haematol 2001; 115: 287–297.

    Article  CAS  Google Scholar 

  21. Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 2005; 11: 77–84.

    Article  CAS  Google Scholar 

  22. Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T et al. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci USA 1999; 96: 4592–4597.

    Article  CAS  Google Scholar 

  23. Suzuki T, Ando T, Tsuchiya K, Fukazawa N, Saito A, Mariko Y et al. Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J Med Chem 1999; 42: 3001–3003.

    Article  CAS  Google Scholar 

  24. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001; 20: 6969–6978.

    Article  CAS  Google Scholar 

  25. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS . Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001; 276: 36734–36741.

    Article  CAS  Google Scholar 

  26. Barbetti V, Gozzini A, Rovida E, Morandi A, Spinelli E, Fossati G et al. Selective anti-leukaemic activity of low-dose histone deacetylase inhibitor ITF2357 on AML1/ETO-positive cells. Oncogene 2008; 27: 1767–1778.

    Article  CAS  Google Scholar 

  27. Henderson C, Mizzau M, Paroni G, Maestro R, Schneider C, Brancolini C . Role of caspases, Bid, and p53 in the apoptotic response triggered by histone deacetylase inhibitors trichostatin-A (TSA) and suberoylanilide hydroxamic acid (SAHA). J Biol Chem 2003; 278: 12579–12589.

    Article  CAS  Google Scholar 

  28. Qi H, Ratnam M . Synergistic induction of folate receptor beta by all-trans retinoic acid and histone deacetylase inhibitors in acute myelogenous leukemia cells: mechanism and utility in enhancing selective growth inhibition by antifolates. Cancer Res 2006; 66: 5875–5882.

    Article  CAS  Google Scholar 

  29. Beckers T, Burkhardt C, Wieland H, Gimmnich P, Ciossek T, Maier T et al. Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int J Cancer 2007; 121: 1138–1148.

    Article  CAS  Google Scholar 

  30. Danial NN, Korsmeyer SJ . Cell death: critical control points. Cell 2004; 116: 205–219.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Ministry of Science and Innovation of Spain (BFU2006-01813/BMC and RD06/0020/0041). The CIC receives support from the European Community through the regional development funding program (FEDER). PM was supported by the FIS-FEDER through projects to JSM, and a Spanish Myeloma Network Program (G03/136). EMO was supported by the ‘Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I+D+I)’ and by ‘Instituto de Salud Carlos III-Fondo de Investigación Sanitaria’ with reference number 400001. MG was supported by the ‘Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I+D+I)’ and by ‘Instituto de Salud Carlos III-Fondo de Investigación Sanitaria’ with expedient number 05/0279. PA is an employee of Novartis Pharmaceuticals. This work was supported by the ‘Acción Transversal del Cáncer’ project, through an agreement between Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Science and Innovation, and the Cancer Research Foundation of Salamanca University. Our group also receives support from the Junta de Castilla y Léon through ‘Ayudas destinadas a financiar programas de actividad investigadora a realizar por grupos de investigación de excelencia de Castilla y León’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Maiso.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiso, P., Colado, E., Ocio, E. et al. The synergy of panobinostat plus doxorubicin in acute myeloid leukemia suggests a role for HDAC inhibitors in the control of DNA repair. Leukemia 23, 2265–2274 (2009). https://doi.org/10.1038/leu.2009.182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.182

Keywords

This article is cited by

Search

Quick links