Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Leading Article
  • Published:

Mixed-lineage-leukemia (MLL) fusion protein collaborates with Ras to induce acute leukemia through aberrant Hox expression and Raf activation

Abstract

Mixed-lineage-leukemia (MLL) fusion oncogenes are closely involved in infant acute leukemia, which is frequently accompanied by mutations or overexpression of FMS-like receptor tyrosine kinase 3 (FLT3). Earlier studies have shown that MLL fusion proteins induced acute leukemia together with another mutation, such as an FLT3 mutant, in mouse models. However, little has hitherto been elucidated regarding the molecular mechanism of the cooperativity in leukemogenesis. Using murine model systems of the MLL-fusion-mediated leukemogenesis leading to oncogenic transformation in vitro and acute leukemia in vivo, this study characterized the molecular network in the cooperative leukemogenesis. This research revealed that MLL fusion proteins cooperated with activation of Ras in vivo, which was substitutable for Raf in vitro, synergistically, but not with activation of signal transducer and activator of transcription 5 (STAT5), to induce acute leukemia in vivo as well as oncogenic transformation in vitro. Furthermore, Hoxa9, one of the MLL-targeted critical molecules, and activation of Ras in vivo, which was replaceable with Raf in vitro, were identified as fundamental components sufficient for mimicking MLL-fusion-mediated leukemogenesis. These findings suggest that the molecular crosstalk between aberrant expression of Hox molecule(s) and activated Raf may have a key role in the MLL-fusion-mediated-leukemogenesis, and may thus help develop the novel molecularly targeted therapy against MLL-related leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Vogelstein B, Kinzler KW . Cancer genes and the pathways they control. Nat Med 2004; 10: 789–799.

    Article  CAS  PubMed  Google Scholar 

  2. Look AT . Oncogenic transcription factors in the human acute leukemias. Science 1997; 278: 1059–1064.

    Article  CAS  Google Scholar 

  3. Rowley JD . The critical role of chromosome translocations in human leukemias. Annu Rev Genet 1998; 32: 495–519.

    Article  CAS  PubMed  Google Scholar 

  4. Gilliland DG, Tallman MS . Focus on acute leukemias. Cancer Cell 2002; 1: 417–420.

    Article  CAS  PubMed  Google Scholar 

  5. Kelly LM, Kutok JL, Williams IR, Boulton CL, Amaral SM, Curley DP et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA 2002; 99: 8283–8288.

    Article  CAS  PubMed  Google Scholar 

  6. Ono R, Nakajima H, Ozaki K, Kumagai H, Kawashima T, Taki T et al. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest 2005; 115: 919–929.

    Article  CAS  PubMed  Google Scholar 

  7. Schessl C, Rawat VP, Cusan M, Deshpande A, Kohl TM, Rosten PM et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 2005; 115: 2159–2168.

    Article  CAS  PubMed  Google Scholar 

  8. Stubbs MC, Kim YM, Krivtsov AV, Wright RD, Feng Z, Agarwal J et al. MLL-AF9 and FLT3 cooperation in acute myelogenous leukemia: development of a model for rapid therapeutic assessment. Leukemia 2008; 22: 66–77.

    Article  CAS  PubMed  Google Scholar 

  9. Watanabe-Okochi N, Kitaura J, Ono R, Harada H, Harada Y, Komeno Y et al. AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood 2008; 111: 4297–4308.

    Article  CAS  PubMed  Google Scholar 

  10. Ayton PM, Cleary ML . Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695–5707.

    Article  CAS  PubMed  Google Scholar 

  11. Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J et al. New insights to the MLL recombinome of acute leukemias. Leukemia 2009; 23: 1490–1499.

    Article  CAS  PubMed  Google Scholar 

  12. Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML . The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 2005; 123: 207–218.

    Article  CAS  PubMed  Google Scholar 

  13. Daser A, Rabbitts TH . Extending the repertoire of the mixed-lineage leukemia gene MLL in leukemogenesis. Genes Dev 2004; 18: 965–974.

    Article  CAS  PubMed  Google Scholar 

  14. Hess JL . MLL: a histone methyltransferase disrupted in leukemia. Trends Mol Med 2004; 10: 500–507.

    Article  CAS  PubMed  Google Scholar 

  15. Corral J, Lavenir I, Impey H, Warren AJ, Forster A, Larson TA et al. An MLL-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 1996; 85: 853–861.

    Article  CAS  PubMed  Google Scholar 

  16. Drynan LF, Pannell R, Forster A, Chan NM, Cano F, Daser A et al. MLL fusions generated by Cre-loxP-mediated de novo translocations can induce lineage reassignment in tumorigenesis. EMBO J 2005; 24: 3136–3146.

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Iwasaki H, Krivtsov A, Febbo PG, Thorner AR, Ernst P et al. Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO J 2005; 24: 368–381.

    Article  PubMed  Google Scholar 

  18. Chen W, Li Q, Hudson WA, Kumar A, Kirchhof N, Kersey JH . A murine MLL-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy. Blood 2006; 108: 669–677.

    Article  CAS  PubMed  Google Scholar 

  19. Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood 2004; 103: 1085–1088.

    Article  CAS  PubMed  Google Scholar 

  20. Liang DC, Shih LY, Fu JF, Li HY, Wang HI, Hung IJ et al. K-Ras mutations and N-Ras mutations in childhood acute leukemias with or without mixed-lineage leukemia gene rearrangements. Cancer 2006; 106: 950–956.

    Article  CAS  PubMed  Google Scholar 

  21. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    Article  CAS  PubMed  Google Scholar 

  22. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  Google Scholar 

  23. Murata K, Kumagai H, Kawashima T, Tamitsu K, Irie M, Nakajima H et al. Selective cytotoxic mechanism of GTP-14564, a novel tyrosine kinase inhibitor in leukemia cells expressing a constitutively active Fms-like tyrosine kinase 3 (FLT3). J Biol Chem 2003; 278: 32892–32898.

    Article  CAS  PubMed  Google Scholar 

  24. Choudhary C, Schwable J, Brandts C, Tickenbrock L, Sargin B, Kindler T et al. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood 2005; 106: 265–273.

    Article  CAS  PubMed  Google Scholar 

  25. Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T . STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J 1999; 18: 4754–4765.

    Article  CAS  PubMed  Google Scholar 

  26. Schubbert S, Shannon K, Bollag G . Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007; 7: 295–308.

    Article  CAS  PubMed  Google Scholar 

  27. Ariyoshi K, Nosaka T, Yamada K, Onishi M, Oka Y, Miyajima A et al. Constitutive activation of STAT5 by a point mutation in the SH2 domain. J Biol Chem 2000; 275: 24407–24413.

    Article  CAS  PubMed  Google Scholar 

  28. Onishi M, Nosaka T, Misawa K, Mui AL, Gorman D, McMahon M et al. Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol Cell Biol 1998; 18: 3871–3879.

    Article  CAS  PubMed  Google Scholar 

  29. Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol 2003; 31: 1007–1014.

    Article  CAS  PubMed  Google Scholar 

  30. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G . Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 1998; 17: 3714–3725.

    Article  CAS  PubMed  Google Scholar 

  31. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 2008; 132: 487–498.

    Article  CAS  PubMed  Google Scholar 

  32. Calvo KR, Sykes DB, Pasillas M, Kamps MP . Hoxa9 immortalizes a granulocyte-macrophage colony-stimulating factor-dependent promyelocyte capable of biphenotypic differentiation to neutrophils or macrophages, independent of enforced meis expression. Mol Cell Biol 2000; 20: 3274–3285.

    Article  CAS  PubMed  Google Scholar 

  33. Ono R, Ihara M, Nakajima H, Ozaki K, Kataoka-Fujiwara Y, Taki T et al. Disruption of Sept6, a fusion partner gene of MLL, does not affect ontogeny, leukemogenesis induced by MLL-SEPT6, or phenotype induced by the loss of Sept4. Mol Cell Biol 2005; 25: 10965–10978.

    Article  CAS  PubMed  Google Scholar 

  34. Nosaka T, van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP et al. Defective lymphoid development in mice lacking Jak3. Science 1995; 270: 800–802.

    Article  CAS  PubMed  Google Scholar 

  35. Moriggl R, Gouilleux-Gruart V, Jähne R, Berchtold S, Gartmann C, Liu X et al. Deletion of the carboxyl-terminal transactivation domain of MGF-STAT5 results in sustained DNA binding and a dominant negative phenotype. Mol Cell Biol 1996; 16: 5691–5700.

    Article  CAS  PubMed  Google Scholar 

  36. Schwaller J, Parganas E, Wang D, Cain D, Aster JC, Williams IR et al. STAT5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol Cell 2000; 6: 693–704.

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura T, Largaespada DA, Shaughnessy Jr JD, Jenkins NA, Copeland NG . Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat Genet 1996; 12: 149–153.

    Article  CAS  PubMed  Google Scholar 

  38. Grundler R, Miething C, Thiede C, Peschel C, Duyster J . FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood 2005; 105: 4792–4799.

    Article  CAS  PubMed  Google Scholar 

  39. MacKenzie KL, Dolnikov A, Millington M, Shounan Y, Symonds G . Mutant N-ras induces myeloproliferative disorders and apoptosis in bone marrow repopulated mice. Blood 1999; 93: 2043–2056.

    CAS  PubMed  Google Scholar 

  40. Parikh C, Subrahmanyam R, Ren R . Oncogenic NRAS rapidly and efficiently induces CMML- and AML-like diseases in mice. Blood 2006; 108: 2349–2357.

    Article  CAS  PubMed  Google Scholar 

  41. Santaguida M, Schepers K, King B, Sabnis AJ, Forsberg EC, Attema JL et al. JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell 2009; 15: 341–352.

    Article  CAS  PubMed  Google Scholar 

  42. Christiansen DH, Andersen MK, Desta F, Pedersen-Bjergaard J . Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2005; 19: 2232–2240.

    Article  CAS  PubMed  Google Scholar 

  43. Chan IT, Kutok JL, Williams IR, Cohen S, Moore S, Shigematsu H et al. Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease. Blood 2006; 108: 1708–1715.

    Article  CAS  PubMed  Google Scholar 

  44. Kim WI, Matise I, Diers MD, Largaespada DA . RAS oncogene suppression induces apoptosis followed by more differentiated and less myelosuppressive disease upon relapse of acute myeloid leukemia. Blood 2009; 113: 1086–1096.

    Article  CAS  PubMed  Google Scholar 

  45. Zuber J, Radtke I, Pardee TS, Zhao Z, Rappaport AR, Luo W et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev 2009; 23: 877–889.

    Article  CAS  PubMed  Google Scholar 

  46. Chillon MC, Fernandez C, Garcia-Sanz R, Balanzategui A, Ramos F, Fernandez-Calvo J et al. FLT3-activating mutations are associated with poor prognostic features in AML at diagnosis but they are not an independent prognostic factor. Hematol J 2004; 5: 239–246.

    Article  CAS  PubMed  Google Scholar 

  47. Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S . Prognostic relevance of FLT3-TKD mutations in AML: the combination matters--an analysis of 3082 patients. Blood 2008; 111: 2527–2537.

    Article  CAS  PubMed  Google Scholar 

  48. Hisa T, Spence SE, Rachel RA, Fujita M, Nakamura T, Ward JM et al. Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. EMBO J 2004; 23: 450–459.

    Article  CAS  PubMed  Google Scholar 

  49. Wong P, Iwasaki M, Somervaille TC, So CW, Cleary ML . Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev 2007; 21: 2762–2774.

    Article  CAS  PubMed  Google Scholar 

  50. Horton SJ, Grier DG, McGonigle GJ, Thompson A, Morrow M, De Silva I et al. Continuous MLL-ENL expression is necessary to establish a ‘Hox Code’ and maintain immortalization of hematopoietic progenitor cells. Cancer Res 2005; 65: 9245–9252.

    Article  CAS  PubMed  Google Scholar 

  51. Jin G, Yamazaki Y, Takuwa M, Takahara T, Kaneko K, Kuwata T et al. Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood 2007; 109: 3998–4005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Guy Sauvageau (Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, Canada) for the plasmid harboring a fragment of Hoxa9, and Dr Yusuke Satoh (Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan) for technical advice. We are also grateful to R&D Systems for providing cytokines, and Brian Quinn for language assistance. This work was supported in part by Chugai Pharmaceutical Company Ltd, Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology in Japan, the Novartis Foundation (Japan) for the Promotion of Science and the Japan Leukaemia Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Nosaka.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ono, R., Kumagai, H., Nakajima, H. et al. Mixed-lineage-leukemia (MLL) fusion protein collaborates with Ras to induce acute leukemia through aberrant Hox expression and Raf activation. Leukemia 23, 2197–2209 (2009). https://doi.org/10.1038/leu.2009.177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.177

Keywords

This article is cited by

Search

Quick links