Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

Activation of p53 by Nutlin-3a, an antagonist of MDM2, induces apoptosis and cellular senescence in adult T-cell leukemia cells

Abstract

It has been reported that the induction of cellular senescence through p53 activation is an effective strategy in tumor regression. Unfortunately, however, tumors including adult T-cell leukemia/lymphoma (ATL) have disadvantages such as p53 mutations and a lack of p16INK4a and/or p14ARF. In this study we characterized Nutlin-3a-induced cell death in 16 leukemia/lymphoma cell lines. Eight cell lines, including six ATL-related cell lines, had wild-type p53 and Nutlin-3a-activated p53, and the cell lines underwent apoptosis or cell-cycle arrest, whereas eight cell lines with mutated p53 were resistant. Interestingly, senescence-associated-β-galactosidase (SA-β-gal) staining revealed that only ATL-related cell lines with wild-type p53 showed cellular senescence, although they lack both p16INK4a and p14ARF. These results indicate that cellular senescence is an important event in p53-dependent cell death in ATL cells and is inducible without p16INK4a and p14ARF. Furthermore, knockdown of Tp53-induced glycolysis and apoptosis regulator (TIGAR), a novel target gene of p53, by small interfering RNA(siRNA) indicated its important role in the induction of cellular senescence. As many patients with ATL carry wild-type p53, our study suggests that p53 activation by Nutlin-3a is a promising strategy in ATL. We also found synergism with a combination of Nutlin-3a and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), suggesting the application of Nutlin-3a-based therapy to be broader than expected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Horn HF, Vousden KH . Coping with stress: multiple ways to activate p53. Oncogene 2007; 26: 1306–1316.

    Article  CAS  Google Scholar 

  2. Helton ES, Chen X . p53 modulation of the DNA damage response. J Cell Biochem 2007; 100: 883–896.

    Article  CAS  Google Scholar 

  3. Chipuk JE, Green DR . Dissecting p53-dependent apoptosis. Cell Death Differ 2006; 13: 994–1002.

    Article  CAS  Google Scholar 

  4. Levine AJ, Hu W, Feng Z . The P53 pathway: what questions remain to be explored? Cell Death Differ 2006; 13: 1027–1036.

    Article  CAS  Google Scholar 

  5. Yu J, Zhang L . The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 2005; 331: 851–858.

    Article  CAS  Google Scholar 

  6. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006; 126: 107–120.

    Article  CAS  Google Scholar 

  7. Sugimoto M, Gromley A, Sherr CJ . Hzf, a p53-responsive gene, regulates maintenance of the G2 phase checkpoint induced by DNA damage. Mol Cell Biol 2006; 26: 502–512.

    Article  CAS  Google Scholar 

  8. Das S, Raj L, Zhao B, Kimura Y, Bernstein A, Aaronson SA et al. Hzf determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell 2007; 130: 624–637.

    Article  CAS  Google Scholar 

  9. Collado M, Blasco MA, Serrano M . Cellular senescence in cancer and aging. Cell 2007; 130: 223–233.

    Article  CAS  Google Scholar 

  10. Kim WY, Sharpless NE . The regulation of INK4/ARF in cancer and aging. Cell 2006; 127: 265–275.

    Article  CAS  Google Scholar 

  11. Satyanarayana A, Rudolph KL . p16 and ARF: activation of teenage proteins in old age. J Clin Invest 2004; 114: 1237–1240.

    Article  CAS  Google Scholar 

  12. Yoshida M . Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis. Oncogene 2005; 24: 5931–5937.

    Article  CAS  Google Scholar 

  13. Taylor GP, Matsuoka M . Natural history of adult T-cell leukemia/lymphoma and approaches to therapy. Oncogene 2005; 24: 6047–6057.

    Article  CAS  Google Scholar 

  14. Yamada Y, Tomonaga M . The current status of therapy for adult T-cell leukaemia-lymphoma in Japan. Leuk Lymphoma 2003; 44: 611–618.

    Article  CAS  Google Scholar 

  15. Grassmann R, Aboud M, Jeang KT . Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene 2005; 24: 5976–5985.

    Article  CAS  Google Scholar 

  16. Marriott SJ, Semmes OJ . Impact of HTLV-I Tax on cell cycle progression and the cellular DNA damage repair response. Oncogene 2005; 24: 5986–5995.

    Article  CAS  Google Scholar 

  17. Akagi T, Ono H, Tsuchida N, Shimotohno K . Aberrant expression and function of p53 in T-cells immortalized by HTLV-I Tax1. FEBS Lett 1997; 406: 263–266.

    Article  CAS  Google Scholar 

  18. Pise-Masison CA, Choi KS, Radonovich M, Dittmer J, Kim SJ, Brady JN . Inhibition of p53 transactivation function by the human T-cell lymphotropic virus type 1 Tax protein. J Virol 1998; 72: 1165–1170.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mulloy JC, Kislyakova T, Cereseto A, Casareto L, LoMonico A, Fullen J et al. Human T-cell lymphotropic/leukemia virus type 1 Tax abrogates p53-induced cell cycle arrest and apoptosis through its CREB/ATF functional domain. J Virol 1998; 72: 8852–8860.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Miyazato A, Sheleg S, Iha H, Li Y, Jeang KT . Evidence for NF-kappaB- and CBP-independent repression of p53′s transcriptional activity by human T-cell leukemia virus type 1 Tax in mouse embryo and primary human fibroblasts. J Virol 2005; 79: 9346–9350.

    Article  CAS  Google Scholar 

  21. Pise-Masison CA, Jeong SJ, Brady JN . Human T cell leukemia virus type 1: the role of Tax in leukemogenesis. Arch Immunol Ther Exp (Warsz) 2005; 53: 283–296.

    CAS  Google Scholar 

  22. Soussi T, Wiman KG . Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 2007; 12: 303–312.

    Article  CAS  Google Scholar 

  23. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  CAS  Google Scholar 

  24. Vassilev LT . MDM2 inhibitors for cancer therapy. Trends Mol Med 2007; 13: 23–31.

    Article  CAS  Google Scholar 

  25. Tawara M, Hogerzeil SJ, Yamada Y, Takasaki Y, Soda H, Hasegawa H et al. Impact of p53 aberration on the progression of adult T-cell leukemia/lymphoma. Cancer Lett 2006; 234: 249–255.

    Article  CAS  Google Scholar 

  26. Hasegawa H, Yamada Y, Harasawa H, Tsuji T, Murata K, Sugahara K et al. Sensitivity of adult T-cell leukaemia lymphoma cells to tumour necrosis factor-related apoptosis-inducing ligand. Br J Haematol 2005; 128: 253–265.

    Article  CAS  Google Scholar 

  27. Yoshida M, Miyoshi I, Hinuma Y . Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci USA 1982; 79: 2031–2035.

    Article  CAS  Google Scholar 

  28. Posner LE, Robert-Guroff M, Kalyanaraman VS, Poiesz BJ, Ruscetti FW, Fossieck B et al. Natural antibodies to the human T cell lymphoma virus in patients with cutaneous T cell lymphomas. J Exp Med 1981; 154: 333–346.

    Article  CAS  Google Scholar 

  29. Usui T, Yanagihara K, Tsukasaki K, Murata K, Hasegawa H, Yamada Y et al. Characteristic expression of HTLV-1 basic zipper factor (HBZ) transcripts in HTLV-1 provirus-positive cells. Retrovirology 2008; 5: 34.

    Article  Google Scholar 

  30. Berenbaum MC . A method for testing for synergy with any number of agents. J Infect Dis 1978; 137: 122–130.

    Article  CAS  Google Scholar 

  31. Hasegawa H, Yamada Y, Komiyama K, Hayashi M, Ishibashi M, Sunazuka T et al. A novel natural compound, a cycloanthranilylproline derivative (Fuligocandin B), sensitizes leukemia cells to apoptosis induced by tumor necrosis factor related apoptosis-inducing ligand (TRAIL) through 15-deoxy-Delta 12, 14 prostaglandin J2 production. Blood 2007; 110: 1664–1674.

    Article  CAS  Google Scholar 

  32. Iha H, Kibler KV, Yedavalli VR, Peloponese JM, Haller K, Miyazato A et al. Segregation of NF-kappaB activation through NEMO/IKKgamma by Tax and TNFalpha: implications for stimulus-specific interruption of oncogenic signaling. Oncogene 2003; 22: 8912–8923.

    Article  CAS  Google Scholar 

  33. Reid RL, Lindholm PF, Mireskandari A, Dittmer J, Brady JN . Stabilization of wild-type p53 in human T-lymphocytes transformed by HTLV-I. Oncogene 1993; 8: 3029–3036.

    CAS  PubMed  Google Scholar 

  34. Cheng J, Haas M . Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines. Mol Cell Biol 1990; 10: 5502–5509.

    Article  CAS  Google Scholar 

  35. Sugito S, Yamato K, Sameshima Y, Yokota J, Yano S, Miyoshi I . Adult T-cell leukemia: structures and expression of the p53 gene. Int J Cancer 1991; 49: 880–885.

    Article  CAS  Google Scholar 

  36. Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 1991; 88: 5413–5417.

    Article  CAS  Google Scholar 

  37. Sugimoto K, Toyoshima H, Sakai R, Miyagawa K, Hagiwara K, Ishikawa F et al. Frequent mutations in the p53 gene in human myeloid leukemia cell lines. blood 1992; 79: 2378–2383.

    CAS  PubMed  Google Scholar 

  38. Neubauer A, He M, Schmidt CA, Huhn D, Liu ET . Genetic alterations in the p53 gene in the blast crisis of chronic myelogenous leukemia: analysis by polymerase chain reaction based techniques. Leukemia 1993; 7: 593–600.

    CAS  PubMed  Google Scholar 

  39. Takemoto S, Trovato R, Cereseto A, Nicot C, Kislyakova T, Casareto L et al. p53 stabilization and functional impairment in the absence of genetic mutation or the alteration of the p14(ARF)-MDM2 loop in ex vivo and cultured adult T-cell leukemia/lymphoma cells. Blood 2000; 95: 3939–3944.

    CAS  PubMed  Google Scholar 

  40. Cereseto A, Diella F, Mulloy JC, Cara A, Michieli P, Grassmann R et al. p53 functional impairment and high p21waf1/cip1 expression in human T-cell lymphotropic/leukemia virus type I-transformed T cells. Blood 1996; 88: 1551–1560.

    CAS  PubMed  Google Scholar 

  41. Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 2005; 106: 3150–3159.

    Article  CAS  Google Scholar 

  42. Coll-Mulet L, Iglesias-Serret D, Santidrián AF, Cosialls AM, de Frias M, Castaño E et al. MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 2006; 107: 4109–4114.

    Article  CAS  Google Scholar 

  43. Hasegawa H, Yamada Y, Komiyama K, Hayashi M, Ishibashi M, Yoshida T et al. Dihydroflavonol BB-1, an extract of natural plant Blumea balsamifera, abrogates TRAIL resistance in leukemia cells. Blood 2006; 107: 679–688.

    Article  CAS  Google Scholar 

  44. Martins CP, Brown-Swigart L, Evan GI . Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 2006; 127: 1323–1334.

    Article  CAS  Google Scholar 

  45. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445: 656–660.

    Article  CAS  Google Scholar 

  46. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. Restoration of p53 function leads to tumour regression in vivo. Nature 2007; 445: 661–665.

    Article  CAS  Google Scholar 

  47. Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 2006; 103: 1888–1893.

    Article  CAS  Google Scholar 

  48. Van Maerken T, Speleman F, Vermeulen J, Lambertz I, De Clercq S, De Smet E et al. Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. Cancer Res 2006; 66: 9646–9655.

    Article  CAS  Google Scholar 

  49. Sherr CJ . Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 2006; 6: 663–673.

    Article  CAS  Google Scholar 

  50. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. Tumour biology: senescence in premalignant tumours. Nature 2005; 436: 642.

    Article  CAS  Google Scholar 

  51. Datta A, Bellon M, Sinha-Datta U, Bazarbachi A, Lepelletier Y, Canioni D et al. Persistent inhibition of telomerase reprograms adult T-cell leukemia to p53-dependent senescence. Blood 2006; 108: 1021–1029.

    Article  CAS  Google Scholar 

  52. Dasgupta A, Jung KJ, Jeong SJ, Brady JN . Inhibition of methyltransferases results in induction of G2/M checkpoint and programmed cell death in human T-lymphotropic virus type 1-transformed cells. J Virol 2008; 82: 49–59.

    Article  CAS  Google Scholar 

  53. Jeong SJ, Dasgupta A, Jung KJ, Um JH, Burke A, Park HU et al. PI3K/AKT inhibition induces caspase-dependent apoptosis in HTLV-1-transformed cells. Virology 2008; 370: 264–272.

    Article  CAS  Google Scholar 

  54. Jung KJ, Dasgupta A, Huang K, Jeong SJ, Pise-Masison C, Gurova KV et al. Small-molecule inhibitor which reactivates p53 in human T-cell leukemia virus type 1-transformed cells. J Virol 2008; 82: 8537–8547.

    Article  CAS  Google Scholar 

  55. Kuo YL, Giam CZ . Activation of the anaphase promoting complex by HTLV-1 tax leads to senescence. EMBO J 2006; 25: 1741–1752.

    Article  CAS  Google Scholar 

  56. Ringshausen I, O′Shea CC, Finch AJ, Swigart LB, Evan GI . Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 2006; 10: 501–514.

    Article  CAS  Google Scholar 

  57. Duiker EW, Mom CH, de Jong S, Willemse PH, Gietema JA, van der Zee AG et al. The clinical trail of TRAIL. Eur J Cancer 2006; 42: 2233–2240.

    Article  CAS  Google Scholar 

  58. Schaefer U, Voloshanenko O, Willen D, Walczak H . TRAIL: a multifunctional cytokine. Front Biosci 2007; 12: 3813–3824.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Norman E. Sharpless, Departments of Medicine and Genetics, The Lineberger Comprehensive Cancer Center, The University of North Carolina, for his critical review and constructive suggestions on this article. This study was supported in part by a Grant-in-aid for Scientific Research (18590510) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, H., Yamada, Y., Iha, H. et al. Activation of p53 by Nutlin-3a, an antagonist of MDM2, induces apoptosis and cellular senescence in adult T-cell leukemia cells. Leukemia 23, 2090–2101 (2009). https://doi.org/10.1038/leu.2009.171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.171

Keywords

This article is cited by

Search

Quick links