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Myelodysplastic syndromes: lost between two states?
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Myelodysplastic syndromes (MDSs) are a heterogeneous group
of clonal hematological diseases characterized by bone marrow
hypercellularity, dysplasia, various degrees of cytopenia and a
risk of progression to acute myeloid leukemia (AML). There
has been little progress toward the molecular classification of
MDSs and the identification of new markers and therapeutic
targets. Using the International Prgonostic Scoring System,
MDSs are classified as being at low, intermediate and high risk
of developing AML.1,2 New developments in the understanding
of the molecular alterations and mechanisms leading to MDS
could result in a better understanding of the physiology of
the hematopoietic system, an accurate classification of the
syndromes, a reliable evaluation of the prognosis for the patients
and the design of efficient therapies. Here, we propose a
speculative interpretation of the latest molecular results in the
field.

Molecular alterations of MDSs

In MDSs, chromosomal abnormalities are recurrent but not
specific. Epigenetic deregulations such as hypermethylations are
frequent, and represent the rationale for current treatments.3–5

MDSs are also characterized by a high degree of apoptosis,
which explains the contrast between bone marrow hypercellu-
larity and cytopenias.6 Thus, to understand MDSs, it is necessary
to explain two prominent features, hypermethylations and
apoptosis. As it happens, some recent discoveries shed light
on both.
Single nucleotide polymorphism array or array comparative

genomic hybridization have confirmed the frequency of
genomic abnormalities and shown the importance of uni-
parental disomy.7–13 They have also revealed heterozygous
deletions of regions and genes that are potentially involved in
MDS genesis, such as ASXL1, TET2 and UTX.11,14 UTX, which
encodes a histone 3 (H3) demethylase,15 has been found to be
mutated in many cancers, including myeloid diseases and
multiple myeloma, in which it is inactivated.16 Nonsense and
frameshift mutations in TET2 at 4q24 and in ASXL1 at 20q11
were recently identified in 15–25% of MDS cases.14,17–21

Mutations/deletions are often heterozygous, leading to haploin-
sufficiency, but the two alleles of the gene may be affected.
TET2 and ASXL1 function is not completely understood, but
could be linked to regulation of transcription. ASXL1 helps
recruit polycomb and trithorax complexes to specific chromatin
domains.22,23 It can also enhance histone acetylation and
stimulate retinoic acid target’s expression, such as JMJD3.24

TET2 could have a role similar to TET1 in the generation of
hydroxymethylcytosines and contribute to epigenetic regula-
tions.25 We found one MDS case with a heterozygous loss of
ASXL2 and another case with a heterozygous loss of TET3.14 The
sequencing of these genes in a series of chronic myelomono-
cytic leukemia (CMML) revealed one nonsense mutation of
ASXL2 but none of TET3. A similar absence of mutation has

been reported by Abdel-Wahab et al.26 for TET1 and TET3.
Deletions of ASXL3 have been found in MDS.21 TET226

(Kosmider et al., submitted) and ASXL114 are mutated at a high
frequency (40–50%) in CMML, a related disease classified as a
MDS/myeloproliferative neoplasm (MPN). The same high
frequency of mutations in CMML has also been reported for
other genes such as RUNX1.27,28

Heterozygous deletions of the long arm of chromosome 5
affect two regions.29 One at q33.1 is associated with the 5q�
syndrome, and the RPS14 gene has been identified as the gene
responsible for this class of MDS.29 RPS14 is required for the
maturation of 40S ribosomal subunits, and ribosome production
is impaired in 5q� cases. The second region is q31.2, and it is
involved in all other classes of MDS and in AML. No single gene
has been identified as being responsible. The haploinsufficiency
of several genes in that region, including that of CXXC530,31 or
JMJD1B,32 could be involved.33 The 5q31.2 region is para-
logous to 4q24 where TET2 is located, but no TET family mem-
ber has been identified. Deletions of 20q are also frequent in
MDSs. No bona fide tumor suppressor gene has been identified
yet that could account for those alterations. ASXL1 could be
involved, especially in some centromeric alterations.34 Another
good candidate is L3MBTL1 at 20q12, which encodes a protein
involved in chromatin function.35 Inactivation of micro-RNA
loci could also explain the loss of large regions.36,37

Thus, several recent studies have identified new genes whose
alterations are involved in leukemogenesis. In more than half the
cases, the mechanism involved seems to be haploinsufficiency
caused by a mutation or a deletion.38 However, uniparental
disomy is frequent and may reduce a number of mutations to
homozygosity.9,10,12,13

Molecular processes involved in MDS

Self-renewal of the hematopoietic stem cell is ensured by a
complex regulation of transcription programs involving specific
stem cell genes and chromatin modeling. The major players are
polycomb and trithorax complexes, whose subtle interplay
keeps the stem cell in an undifferentiated and pluripotent state
by repressing developmental and differentiation transcriptional
programs.39–43 Activation and repression of transcription pro-
grams is mediated by specific modifications of DNA and
chromatin, such as methylation marks. Normally, progenitors
of stem cells lose their self-renewal potential when entering a
differentiation pathway (Figure 1). In AML, some oncogenic
alterations lead to de novo acquisition of self-renewal potential
in these progenitors by inducing modifications of histone marks
and chromatin modeling.44,45 This re-programming leads to
cells blocked early at the blast phase, which is characteristic
of AML.

What happens in MDS? The potential role of TET2, ASXL1 and
UTX in chromatin modeling and transcription programming is
an interesting area of investigation.46 Conversion of methyl-
cytosine in hydroxymethylcytosine may facilitate DNA demethy-
lation;25 thus, loss of TET2 would lead to an increase in
methylations. ASXL1 has a PHD (plant homeodomain) finger,
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which is found in nuclear proteins, and whose substrate tends to
be chromatin.47,48 UTX is a histone demethylase.49 UTX and its
paralog, JMJD3, demethylate trimethylated (me3) lysine 27
(K27) on H3 (H3K27me3).50 In stem cells, which do not express
UTX,51 H3K27me3 blocks the transcription of genes necessary
for differentiation. A rapid decrease of H3K27me3 marks occurs
during stem cell differentiation.52 Thus, inactivation of histone
demethylase in stem cells should lead to the maintenance of
H3K27me3 marks on target genes, and should prevent
differentiation. Inactivation of histone demethylases could not
only be due to mutations and deletions of the corresponding
gene16 but also due to protein complex alterations such as the
SMRT complex that regulate histone modifiers.53

The molecular alterations identified in MDS suggest that gene
expression programs can be altered in MDSs, and this is in favor
of an increased activity of polycomb complexes54 and a
corresponding prominence of the self-renewal activity of stem
or progenitor cells over the differentiation pathway (Figure 1).
However, in MDSs, modifications do not induce a complete
block of differentiation as they do in AML, allowing some
differentiation to take place. This increase in self-renewal
activity is likely to be proportional to the number of alterations
and likely to depend on the cell that is targeted by those
alterations. The early oncogenic hit may occur in a stem cell and
result in a slight increase of self-renewal and pluripotency. It
may also affect progenitors, which will partially acquire some
capacity to self-renew without completely losing the possibility
to differentiate. The two scenarios, incomplete block and
abnormal, incomplete differentiation struggle for prominence,

result in neither one being optimal. Differentiation hindrance
would lead to a high level of apoptosis, and AML would occur
when a secondary alteration induces a complete block of
differentiation and resistance to apoptosis.

Haploinsufficiencies of regulatory genes, such as TET2,
ASXL1 or UTX, unless they accumulate, could have a moderate
effect on epigenetic marks. In contrast, in AML, chimeric
proteins produced by fusion genes, such as MLL H3K4
methyltransferase or MYST3 histone acetyltransferase, can
encode strong epigenetic modifiers acting on important
switches.55–57 Deregulation of a PHD finger through a fusion
with NUP98 can trigger leukemogenesis.58 These fusions
operate through HOX-linked pathways. However, not all AML
gene fusions or mutations are able to trigger AML in mice when
acting alone.59–61 Thus, another possibility is that some AML
alterations cooperate with tumor suppressor inactivation, such
as TET2 mutation, to enhance self-renewal programming, block
differentiation and stimulate proliferation (Figure 1). Indeed,
mutations of TET218,26 and ASXL1 (unpublished observations)
are found in AML. It will be interesting to survey de novo
AMLs and AMLs secondary to a chronic hematological disease,
to determine whether they display at least one mutation in a
tumor suppressor, such as TET2 and ASXL1, and their associa-
tions with gene fusions and FLT3 and NPM1 mutations.
Combinations of mutations in several tumor suppressors are
certainly possible. The gravity of the disease could parallel the
intensity of the differentiation block and, thus, depend on the
power of gene alterations to modify stem cell programming. In
MDSs, only combinations of alterations, and not single ones,
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Figure 1 Hypothetical mechanism of Myelodysplastic syndrome (MDS) genesis. The normal hematopoietic cell differentiation pathway from a stem cell
(SC) to a differentiated cell (DC) is represented by a cell lineage; it is regulated by a balance between self-renewal and differentiation schematized on the left
by the drawing of a scale. Differentiation is triggered (among other mechanisms) by chromatin remodeling, which can be modified by histone demethylases
that remove repressive marks. Abnormal hematopoiesis in MDS is represented on the second lane; the balance is slightly in favor of self-renewal, possibly
after inactivation of histone demethylases or TET2. The cell targeted by this alteration could be either the hematopoietic stem cell or the progenitor cell (PG).
In AML, the balance is even further tilted and a strong block of differentiation occurs. This can happen, for example, when a dominant fusion gene is
generated by chromosome translocation, or by the accumulation of several events leading to the induction of self-renewal. In MPN, displayed on the lower
panel, mutations favoring self-renewal are equilibrated by mutations favoring proliferation and differentiation and protecting from apoptosis.
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should have a strong effect, and are expected to be found in
high-risk MDSs. To establish the prognosis of a myeloid disease,
it would then be important to determine the total burden of
mutated alleles. Therefore, it will be necessary to identify all
potential tumor suppressors and to search for their mutations in
each sample.
Self-renewal is also balanced by senescence and apoptosis.

The latter programs are induced by the CDKN2 tumor
suppressors (P16, P19/ARF) in response to various stress signals
and oncogenes, such as an activated RAS/MAP pathway.62,63

One key requirement for self-renewal activity is the repression
of the CDKN2 genes. DNA and histone methylations control the
transcription of these genes. Abnormal inactivation of CDKN2
after the loss of a histone demethylase, for example, may shut
off RB/P53-induced senescence and enhance self-renewal
(Figure 2). The same mechanism may be controlled by NPM1.64

One important issue remains. Although MPNs and MDSs are
different chronic diseases, TET2, ASXL1 and UTX mutations are
found in both.16,17,65–67 As in CMML, TET2 and ASXL1 muta-
tions do not seem to be mutually exclusive in MPNs.67 In MPNs,
hematopoietic cell differentiation is preserved. If our hypo-
thesis of gene alteration increasing self-renewal is true, then a
simultaneous increase in proliferation and differentiation in
the MPN stem cells should take place. This could be en-
sured by JAK2 or CBL mutation,68 for example. RAS pathway

mutations may have this role in the myeloproliferative form of
CMML.27

The study of the physiopathology of chronic myeloid diseases
may teach us a lot about how cell fate is regulated and how
cancer arises. It is probable that other, yet unknown genes will
be involved in leukemogenesis. Upcoming studies will have to
determine the number of genes needed to trigger a chronic or
acute disease, whether the alterations of these genes need to
occur in specific combinations or in a particular order, and
whether they affect the phenotype and prognosis of the disease.
It is possible that every MDS (and MPN) has at least an
equivalent of a TET2 and/or ASXL1 mutation, perhaps many
more, which affects stem cell behavior and provokes clonal
expansion. In clinics, the distinction of the earliest lesions from
the cooperative ones will be important to select the therapeu-
tical strategy and surveillance.

It is not yet known how specific to myeloid diseases (or of
hematopoietic diseases altogether) ASXL1 and TET2 mutations
are, but UTXmutations have been found in several types of solid
tumors.16 Anyhow, even if the altered proteins are different in
various cancers, they may belong to similar families and
function in similar modules, and the cellular processes altered
may be the same. The balance between self-renewal and
differentiation/senescence programs is a likely universal target of
oncogenic events and histone demethylases are possible central
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players. Fortunately, we could now firmly handle the loose end
of the wool ball.
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