Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study

Abstract

Adult and child B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) differ in terms of incidence and prognosis. These disparities are mainly due to the molecular abnormalities associated with these two clinical entities. A genome-wide analysis using oligo SNP arrays recently demonstrated that PAX5 (paired-box domain 5) is the main target of somatic mutations in childhood BCP-ALL being altered in 38.9% of the cases. We report here the most extensive analysis of alterations of PAX5 coding sequence in 117 adult BCP-ALL patients in the unique clinical protocol GRAALL-2003/GRAAPH-2003. Our study demonstrates that PAX5 is mutated in 34% of adult BCP-ALL, mutations being partial or complete deletion, partial or complete amplification, point mutation or fusion gene. PAX5 alterations are heterogeneous consisting in complete loss in 17%, focal deletions in 10%, point mutations in 7% and translocations in 1% of the cases. PAX5 complete loss and PAX5 point mutations differ. PAX5 complete loss seems to be a secondary event and is significantly associated with BCR-ABL1 or TCF3-PBX1 fusion genes and a lower white blood cell count.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Cobaleda C, Schebesta A, Delogu A, Busslinger M . Pax5: the guardian of B cell identity and function. Nat Immunol 2007; 8: 463–470.

    Article  CAS  Google Scholar 

  2. Robson EJ, He SJ, Eccles MR . A PANorama of PAX genes in cancer and development. Nat Rev Cancer 2006; 6: 52–62.

    Article  CAS  Google Scholar 

  3. Adams B, Dorfler P, Aguzzi A, Kozmik Z, Urbanek P, Maurer-Fogy I et al. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev 1992; 6: 1589–1607.

    Article  CAS  Google Scholar 

  4. Fuxa M, Busslinger M . Reporter gene insertions reveal a strictly B lymphoid-specific expression pattern of pax5 in support of its B cell identity function. J Immunol 2007; 178: 3031–3037.

    Article  CAS  Google Scholar 

  5. Nutt SL, Heavey B, Rolink AG, Busslinger M . Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 1999; 401: 556–562.

    Article  CAS  Google Scholar 

  6. Rolink AG, Nutt SL, Melchers F, Busslinger M . Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 1999; 401: 603–606.

    Article  CAS  Google Scholar 

  7. Cobaleda C, Jochum W, Busslinger M . Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 2007; 449: 473–477.

    Article  CAS  Google Scholar 

  8. Iida S, Rao PH, Nallasivam P, Hibshoosh H, Butler M, Louie DC et al. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood 1996; 88: 4110–4117.

    CAS  PubMed  Google Scholar 

  9. Busslinger M, Klix N, Pfeffer P, Graninger PG, Kozmik Z . Deregulation of PAX-5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc Natl Acad Sci USA 1996; 93: 6129–6134.

    Article  CAS  Google Scholar 

  10. Poppe B, De Paepe P, Michaux L, Dastugue N, Bastard C, Herens C et al. PAX5/IGH rearrangement is a recurrent finding in a subset of aggressive B-NHL with complex chromosomal rearrangements. Genes Chromosomes Cancer 2005; 44: 218–223.

    Article  CAS  Google Scholar 

  11. Cazzaniga G, Daniotti M, Tosi S, Giudici G, Aloisi A, Pogliani E et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res 2001; 61: 4666–4670.

    CAS  PubMed  Google Scholar 

  12. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  Google Scholar 

  13. Kawamata N, Ogawa S, Zimmermann M, Niebuhr B, Stocking C, Sanada M et al. Cloning of genes involved in chromosomal translocations by high-resolution single nucleotide polymorphism genomic microarray. Proc Natl Acad Sci USA 2008; 105: 11921–11926.

    Article  CAS  Google Scholar 

  14. Nebral K, Denk D, Attarbaschi A, Konig M, Mann G, Haas OA et al. Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 2009; 23: 134–143.

    Article  CAS  Google Scholar 

  15. An Q, Wright SL, Konn ZJ, Matheson E, Minto L, Moorman AV et al. Variable breakpoints target PAX5 in patients with dicentric chromosomes: a model for the basis of unbalanced translocations in cancer. Proc Natl Acad Sci USA 2008; 105: 17050–17054.

    Article  CAS  Google Scholar 

  16. Bousquet M, Broccardo C, Quelen C, Meggetto F, Kuhlein E, Delsol G et al. A novel PAX5-ELN fusion protein identified in B-cell acute lymphoblastic leukemia acts as a dominant negative on wild-type PAX5. Blood 2007; 109: 3417–3423.

    Article  CAS  Google Scholar 

  17. Nebral K, Konig M, Harder L, Siebert R, Haas OA, Strehl S . Identification of PML as novel PAX5 fusion partner in childhood acute lymphoblastic leukaemia. Br J Haematol 2007; 139: 269–274.

    Article  CAS  Google Scholar 

  18. Armstrong SA, Look AT . Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 2005; 23: 6306–6315.

    Article  CAS  Google Scholar 

  19. Huguet F, Leguay T, Raffoux E, Thomas X, Beldjord K, Delabesse E et al. Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: the GRAALL-2003 Study. J Clin Oncol 2009; 27: 911–918.

    Article  CAS  Google Scholar 

  20. de Labarthe A, Rousselot P, Huguet-Rigal F, Delabesse E, Witz F, Maury S et al. Imatinib combined with induction or consolidation chemotherapy in patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the GRAAPH-2003 study. Blood 2007; 109: 1408–1413.

    Article  CAS  Google Scholar 

  21. Heerema NA, Raimondi SC, Anderson JR, Biegel J, Camitta BM, Cooley LD et al. Specific extra chromosomes occur in a modal number dependent pattern in pediatric acute lymphoblastic leukemia. Genes Chromosomes Cancer 2007; 46: 684–693.

    Article  CAS  Google Scholar 

  22. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317.

    Article  CAS  Google Scholar 

  23. Kaplan E, Meier P . Nonparametric estimation from incomplete observations. J Am stat Assoc 1958; 53: 457–481.

    Article  Google Scholar 

  24. Peto R, Peto J . Asymptotically efficient rank invariant test procedures. J R Stat Soc 1972; 135: 185–206.

    Google Scholar 

  25. Gray R . A class of k-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat 1998; 16: 1141–1154.

    Article  Google Scholar 

  26. Kozmik Z, Wang S, Dorfler P, Adams B, Busslinger M . The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol Cell Biol 1992; 12: 2662–2672.

    Article  CAS  Google Scholar 

  27. Pui CH, Behm FG, Downing JR, Hancock ML, Shurtleff SA, Ribeiro RC et al 11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. J Clin Oncol 1994; 12: 909–915.

    Article  CAS  Google Scholar 

  28. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995; 9: 1783–1786.

    CAS  PubMed  Google Scholar 

  29. Bertolino E, Reddy K, Medina KL, Parganas E, Ihle J, Singh H . Regulation of interleukin 7-dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nat Immunol 2005; 6: 836–843.

    Article  CAS  Google Scholar 

  30. Paulsson K, Cazier JB, Macdougall F, Stevens J, Stasevich I, Vrcelj N et al. Microdeletions are a general feature of adult and adolescent acute lymphoblastic leukemia: unexpected similarities with pediatric disease. Proc Natl Acad Sci USA 2008; 105: 6708–6713.

    Article  CAS  Google Scholar 

  31. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008; 453: 110–114.

    Article  CAS  Google Scholar 

  32. Miller CS, Mullighan CG, Su X, Ma J, Wang M, Zhang J et al. Pax5 haploinsufficiency cooperates with BCR-ABL1 to induce acute lymphoblastic leukemia. Blood 2008; 112: 114.

    Article  Google Scholar 

  33. Mortuza FY, Moreira IM, Papaioannou M, Gameiro P, Coyle LA, Gricks CS et al. Immunoglobulin heavy-chain gene rearrangement in adult acute lymphoblastic leukemia reveals preferential usage of J(H)-proximal variable gene segments. Blood 2001; 97: 2716–2726.

    Article  CAS  Google Scholar 

  34. Nutt SL, Urbanek P, Rolink A, Busslinger M . Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev 1997; 11: 476–491.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support of the association Laurette-Fugain. JF was supported by an ARC fellowship. CB and NPH were supported by a grant of Institut National du Cancer. ED, CB and PB were supported by the CITTIL (Cooperacion de investigacion transpirenaica en la terapia innovadora de la leucemia).

This work would not have been possible without the help of all the people who take care of the patients involved in the GRAALL studies, especially the centers that contributed directly to this study. Amiens: Damaj, Royer, Dubus, Capiod, Marolleau; Angers: Francois, Hunault, Ifrah, Marie, Genevieve, Baranger, Chassevent, Blanchet; Avignon: Boulat, Derre; Bayonne: Banos, Bauduer, Burtin; Bobigny: Gardin, Fenaux, Beve, Boulalam, Eclache, Fenaux; Bordeaux: Boiron, Leguay, Pigneux, Bilhou-Nabera, Perry, Lacombe, Tabrizi, Lippert, Marit; Brest: Guillerme, Berthou, Lecalvez, De Braekeleer, Ugo; Caen: Reman, Lepesant, Salaun, Plessis, Naguib, Leporrier; Clamart: De Revel, Samson, Desangles; Clermont-Ferrand: Chaleteix, Villemagne, Latiere, Berger, Giollant, Tchirkov, Tournilhac; Dijon: Caillot, Casanovas, Grandjean, Menadier, Favre-Audry, Mugneret, Teyssier; Lens: Stalnikiewicz, Poulain; Lille: Darre, De Botton, Lepelley, Lai, Soenen, Preudhomme, Grardel, Bauters; Limoges: Turlure, Bordessoule, Chaury, Trimoreau, Gachard; Lyon: Le, Nicolini, Tavernier, Thiebaut, Thomas, Lheritier, Girard, Wattel, Tigaud, Hayette, Michallet; Marseille: Vey, Charbonnier, Stoppa, Mouton, Sainty, Moziconacci, Arnoulet, Lafage-Pochitaloff, Blaise; Meaux: Frayfer, Mossafa; Mulhouse: Arkam, Ojeda Uribe, Iglarz, Drenou, Jeandidier, Isaac; Nancy: Witz, Bene, Witz, Gregoire, Monhoven; Necker: Buzyn, Couderc, Asnafi, Valensi, Radford-Weiss, Delabesse, Macintyre, Varet; Paris Pitié-Salpétrière: Dhedin, Aliammar, Merle-Beral, Nguyen-Khac, Davi, Leblond, Vernant; Paris Saint-Louis: Raffoux, Treilhou, Maarek, Daniel, Soulier, Cayuela, Miclea, de Labarthe, Dombret; Reims: Himberlin, Baury, Daliphard, Luquet, Cornillet-Lefebvre, Delmer; Rennes: Escoffre-Barbe, Lamy, Picouleau, Roussel, Henry, Ly Sunnaram, Fest; Rouen: Lepretre, Contentin, Jardin, Lenain, Tilly, Tallon, Lenormand, Stamatoullas-Bastard, Penther, Bastard; Saint-Etienne: Cornillon, Jaubert, Guyotat, Marchand, Campos, Nadal, Flandrin; Toulon: De Jaurreguiberry; Toulouse: Huguet, Recher, Daniel, Kuhlein, Dastugue, Demas, Attal; Tours: Delain, Delepine, Degene, Barin, Colombat; Valenciennes: Fernandes, Poulain, Daudignon; Versailles: Choquet, Rousselot, Taksin, Pousset, Terre, Castaigne; Villejuif: Arnaud, Bayle, Bourhis, Auger, Bernheim.

Among these participants, we specially acknowledge the following cytogeneticists that provided cytogenetic pellets and data to perform PAX5 and TCF3 FISH analyses, Eric Lippert (Bordeaux), Odile Maarek (Paris Saint-Louis), Christian Bastard and Dominique Penther (Rouen), Isabelle Tigaud (Lyon), Florence Nguyen-Khac (Paris Pitié-Salpétrière), Christine Terré (Versailles) and Ghislaine Plessis (Caen). We thank the extended FISH analysis of Francesca Correia (Toulouse).

The design and analysis of the experiments were performed by ED and CB. JF performed the PAX5 quantitative PCR. MB cloned and analyzed the PAX5-ELN case. They cloned the PAX5 mutants helped by ND, SS, EC, CQ, NPH and SD. ED, CB and PB overviewed the results. The cytogenetic results were collected and analyzed by MLP and ND. FISH analyses were performed by MLP and CB. The immunophenotype results were collected by MCB. The molecular data were collected by EAM and ED. KB performed VHDHJH sequence analysis. JDV performed the microarray analysis. JMC, NG, CP, HC, OB, KB and EAM provided DNA samples. VL collected clinical data, reviewed by YC, NI, AD, AP, FH and HD. Paper was written by ED, CB, JF and HD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to É Delabesse.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Familiades, J., Bousquet, M., Lafage-Pochitaloff, M. et al. PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study. Leukemia 23, 1989–1998 (2009). https://doi.org/10.1038/leu.2009.135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.135

Keywords

This article is cited by

Search

Quick links