Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Targeting the mammalian target of Rapamycin to inhibit VEGF and cytokines for the treatment of primary effusion lymphoma

Abstract

Primary effusion lymphoma (PEL) is a fatal malignancy, which typically presents as a lymphomatous effusion that later disseminates. Rapamycin (Rapa), which targets mTOR (mammalian target of Rapa), is currently evaluated as a treatment for PEL, but the recent development of PEL in Rapa-treated post-transplant recipients questions the drug's use in PEL. Here, we used a murine model of PEL effusion that mimics the human disease to investigate the anti-PEL activity of Rapa. We found that Rapa reduces ascites accumulation and extends mouse survival. Initially, Rapa reduced PEL load compared with control mice, but most mice rapidly showed PEL progression. Levels of VEGF, which promotes vascular permeability contributing to effusion formation, were significantly reduced in ascites of Rapa-treated mice compared with controls. Expression of IL-10, the principal autocrine growth factor for PEL, was initially reduced in PEL from Rapa-treated mice but rapidly increased despite treatment. We found that the hypoxic environment of ascites and Rapa cooperate in stimulating IL-10 expression in PEL, which likely contributes to the emergence of drug resistance. These results identify Rapa an effective drug to reduce PEL effusions but illustrate the rapid development of drug resistance, which likely limits the efficacy of Rapa in PEL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM . Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS- related body-cavity-based lymphomas. N Engl J Med 1995; 332: 1186–1191.

    Article  CAS  PubMed  Google Scholar 

  2. Nador RG, Cesarman E, Chadburn A, Dawson DB, Ansari MQ, Sald J et al. Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi's sarcoma-associated herpes virus. Blood 1996; 88: 645–656.

    CAS  PubMed  Google Scholar 

  3. Simonelli C, Spina M, Cinelli R, Talamini R, Tedeschi R, Gloghini A et al. Clinical features and outcome of primary effusion lymphoma in HIV-infected patients: a single-institution study. J Clin Oncol 2003; 21: 3948–3954.

    Article  PubMed  Google Scholar 

  4. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002; 8: 128–135.

    Article  CAS  PubMed  Google Scholar 

  5. Guertin DA, Sabatini DM . Defining the Role of mTOR in Cancer. Cancer Cell 2007; 12: 9–22.

    Article  CAS  PubMed  Google Scholar 

  6. Wullschleger S, Loewith R, Hall MN . TOR signaling in growth and metabolism. Cell 2006; 124: 471–484.

    Article  CAS  PubMed  Google Scholar 

  7. Sarbassov DD, Ali SM, Sabatini DM . Growing roles for the mTOR pathway. Curr Opin Cell Biol 2005; 17: 596–603.

    Article  CAS  PubMed  Google Scholar 

  8. Huang S, Houghton PJ . Inhibitors of mammalian target of rapamycin as novel antitumor agents: from bench to clinic. Curr Opin Investig Drugs 2002; 3: 295–304.

    CAS  PubMed  Google Scholar 

  9. Stallone G, Schena A, Infante B, Di Paolo S, Loverre A, Maggio G et al. Sirolimus for Kaposi's sarcoma in renal-transplant recipients. N Engl J Med 2005; 352: 1317–1323.

    Article  CAS  PubMed  Google Scholar 

  10. Sin SH, Roy D, Wang L, Staudt MR, Fakhari FD, Patel DD et al. Rapamycin is efficacious against primary effusion lymphoma (PEL) cell lines in vivo by inhibiting autocrine signaling. Blood 2007; 109: 2165–2173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boulanger E, Afonso PV, Yahiaoui Y, Adle-Biassette H, Gabarre J, Agbalika F . Human herpesvirus-8 (HHV-8)-associated primary effusion lymphoma in two renal transplant recipients receiving rapamycin. Am J Transplant 2008; 8: 707–710.

    Article  CAS  PubMed  Google Scholar 

  12. Aoki Y, Narazaki M, Kishimoto T, Tosato G . Receptor engagement by viral interleukin-6 encoded by Kaposi sarcoma-associated herpesvirus. Blood 2001; 98: 3042–3049.

    Article  CAS  PubMed  Google Scholar 

  13. Nagy JA, Morgan ES, Herzberg KT, Manseau EJ, Dvorak AM, Dvorak HF . Pathogenesis of ascites tumor growth: angiogenesis, vascular remodeling, and stroma formation in the peritoneal lining. Cancer Res 1995; 55: 376–385.

    CAS  PubMed  Google Scholar 

  14. Aoki Y, Tosato G . Role of vascular endothelial growth factor/vascular permeability factor in the pathogenesis of Kaposi's sarcoma-associated herpesvirus-infected primary effusion lymphomas. Blood 1999; 94: 4247–4254.

    CAS  PubMed  Google Scholar 

  15. Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 2006; 10: 159–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bucci M, Roviezzo F, Posadas I, Yu J, Parente L, Sessa WC et al. Endothelial nitric oxide synthase activation is critical for vascular leakage during acute inflammation in vivo. Proc Natl Acad Sci USA 2005; 102: 904–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 2001; 98: 2604–2609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hatakeyama T, Pappas PJ, Hobson 2nd RW, Boric MP, Sessa WC, Duran WN . Endothelial nitric oxide synthase regulates microvascular hyperpermeability in vivo. J Physiol 2006; 574 (Part 1): 275–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA . Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 1999; 4: 915–924.

    Article  CAS  PubMed  Google Scholar 

  20. Jones D, Ballestas ME, Kaye KM, Gulizia JM, Winters GL, Fletcher J et al. Primary-effusion lymphoma and Kaposi's sarcoma in a cardiac-transplant recipient [see comments]. N Engl J Med 1998; 339: 444–449.

    Article  CAS  PubMed  Google Scholar 

  21. Aoki Y, Jaffe ES, Chang Y, Jones K, Teruya-Feldstein J, Moore PS et al. Angiogenesis and hematopoiesis induced by Kaposi's sarcoma-associated herpesvirus-encoded interleukin-6. Blood 1999; 93: 4034–4043.

    CAS  PubMed  Google Scholar 

  22. Foussat A, Balabanian K, Amara A, Bouchet-Delbos L, Durand-Gasselin I, Baleux F et al. Production of stromal cell-derived factor 1 by mesothelial cells and effects of this chemokine on peritoneal B lymphocytes. Eur J Immunol 2001; 31: 350–359.

    Article  CAS  PubMed  Google Scholar 

  23. Jones KD, Aoki Y, Chang Y, Moore PS, Yarchoan R, Tosato G . Involvement of interleukin-10 (IL-10) and viral IL-6 in the spontaneous growth of Kaposi's sarcoma herpesvirus-associated infected primary effusion lymphoma cells. Blood 1999; 94: 2871–2879.

    CAS  PubMed  Google Scholar 

  24. Funahashi A, Sarkar TK, Kory RC . PO 2, PCO 2, and pH in pleural effusion. J Lab Clin Med 1971; 78: 1006.

    CAS  PubMed  Google Scholar 

  25. Houston MC . Pleural effusion: diagnostic value of measurements of PO2, PCO2, and pH. South Med J 1981; 74: 585–589.

    Article  CAS  PubMed  Google Scholar 

  26. Luo JC, Yamaguchi S, Shinkai A, Shitara K, Shibuya M . Significant expression of vascular endothelial growth factor/vascular permeability factor in mouse ascites tumors. Cancer Res 1998; 58: 2652–2660.

    CAS  PubMed  Google Scholar 

  27. Mesiano S, Ferrara N, Jaffe RB . Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am J Pathol 1998; 153: 1249–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998; 273: 30336–30343.

    Article  CAS  PubMed  Google Scholar 

  29. Mabuchi S, Altomare DA, Connolly DC, Klein-Szanto A, Litwin S, Hoelzle MK et al. RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res 2007; 67: 2408–2413.

    Article  CAS  PubMed  Google Scholar 

  30. Nepomuceno RR, Balatoni CE, Natkunam Y, Snow AL, Krams SM, Martinez OM . Rapamycin inhibits the interleukin 10 signal transduction pathway and the growth of Epstein Barr virus B-cell lymphomas. Cancer Res 2003; 63: 4472–4480.

    CAS  PubMed  Google Scholar 

  31. Vaysberg M, Balatoni CE, Nepomuceno RR, Krams SM, Martinez OM . Rapamycin inhibits proliferation of Epstein-Barr virus-positive B-cell lymphomas through modulation of cell-cycle protein expression. Transplantation 2007; 83: 1114–1121.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. PG supported in part by FIRC (Italian Foundation for Cancer Research). We thank Drs S Steinberg, K Ueda, R Yarchoan, S Pittaluga, D Whitby, S Sakakibara, M Segarra and P McCormick for help on aspects of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Gasperini.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasperini, P., Tosato, G. Targeting the mammalian target of Rapamycin to inhibit VEGF and cytokines for the treatment of primary effusion lymphoma. Leukemia 23, 1867–1874 (2009). https://doi.org/10.1038/leu.2009.117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.117

Keywords

This article is cited by

Search

Quick links