Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Class effects of tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia

Abstract

Tyrosine kinase inhibitors have revolutionized the treatment of chronic myeloid leukemia (CML), offering patients several targeted therapeutic options that provide the possibility of sustained remissions and prolonged survival. With the availability of imatinib, nilotinib and dasatinib, physicians must weigh the efficacy and safety profile of each agent when choosing the best therapeutic option for individual patients. Each agent targets tyrosine kinases within the cell uniquely to cause the desired antiproliferative effect. In addition to inhibiting the BCR-ABL kinase, imatinib and nilotinib target the same array of other tyrosine kinases, including c-KIT and platelet-derived growth factor receptor (PDGFR), albeit with differing potencies. While targeting BCR-ABL with the highest potency among approved agents in CML, dasatinib also targets a broad array of off-target kinases, including SRC family members, PDGFR and EPHB4. The differences in kinase inhibition profiles among these agents in vitro probably account for the differing clinical safety profiles of these agents. This paper reviews the various kinases inhibited by imatinib, nilotinib and dasatinib, and describes the potential impact of kinase inhibition on the efficacy and safety of each agent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    CAS  PubMed  Google Scholar 

  2. Melo JV, Deininger MW . Biology of chronic myelogenous leukemia–signaling pathways of initiation and transformation. Hematol Oncol Clin North Am 2004; 18: 545–568.

    PubMed  Google Scholar 

  3. Ren R . Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 2005; 5: 172–183.

    CAS  PubMed  Google Scholar 

  4. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    CAS  PubMed  Google Scholar 

  5. O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004.

    CAS  PubMed  Google Scholar 

  6. NCCN Clinical Practice Guidelines in Oncology. Chronic Myelogenous Leukemia. v.2. 2009.

  7. Baccarani M, Saglio G, Goldman J, Hochhaus A, Simonsson B, Appelbaum F et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 2006; 108: 1809–1820.

    Article  CAS  PubMed  Google Scholar 

  8. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    CAS  PubMed  Google Scholar 

  9. Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A, Szer J et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 2003; 102: 276–283.

    CAS  PubMed  Google Scholar 

  10. Soverini S, Martinelli G, Rosti G, Bassi S, Amabile M, Poerio A et al. ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA Working Party on Chronic Myeloid Leukemia. J Clin Oncol 2005; 23: 4100–4109.

    CAS  PubMed  Google Scholar 

  11. Willis SG, Lange T, Demehri S, Otto S, Crossman L, Niederwieser D et al. High-sensitivity detection of BCR-ABL kinase domain mutations in imatinib-naive patients: correlation with clonal cytogenetic evolution but not response to therapy. Blood 2005; 106: 2128–2137.

    CAS  PubMed  Google Scholar 

  12. Ray A, Cowan-Jacob SW, Manley PW, Mestan J, Griffin JD . Identification of BCR-ABL point mutations conferring resistance to the Abl kinase inhibitor AMN107 (nilotinib) by a random mutagenesis study. Blood 2007; 109: 5011–5015.

    CAS  PubMed  Google Scholar 

  13. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005; 7: 129–141.

    CAS  PubMed  Google Scholar 

  14. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL . Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004; 305: 399–401.

    CAS  PubMed  Google Scholar 

  15. Goldman JM . How I treat chronic myeloid leukemia in the imatinib era. Blood 2007; 110: 2828–2837.

    CAS  PubMed  Google Scholar 

  16. Carpiuc KT, Stephens JM, Liou SY, Botteman MF . Incidence of grade 3/4 adverse events in imatinib resistant/intolerant chronic phase CML (CP-CML): a comparison of nilotinib and dasatinib. J Clin Oncol 2007; 25: 680s.

    Google Scholar 

  17. Weisberg E, Manley P, Mestan J, Cowan-Jacob S, Ray A, Griffin JD . AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer 2006; 94: 1765–1769.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Manley PW, Cowan-Jacob SW, Mestan J . Advances in the structural biology, design and clinical development of Bcr-Abl kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochim Biophys Acta 2005; 1754: 3–13.

    CAS  PubMed  Google Scholar 

  19. Verstovsek S, Akin C, Manshouri T, Quintas-Cardama A, Huynh L, Manley P et al. Effects of AMN107, a novel aminopyrimidine tyrosine kinase inhibitor, on human mast cells bearing wild-type or mutated codon 816 c-kit. Leuk Res 2006; 30: 1365–1370.

    CAS  PubMed  Google Scholar 

  20. Rix U, Hantschel O, Dürnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 2007; 110: 4055–4063.

    CAS  PubMed  Google Scholar 

  21. Cortes J, O'Brien S, Jabbour Eea . Efficacy of nilotinib (AMN107) in patients (Pts) with newly diagnosed, previously untreated Philadelphia chromosome (Ph)-positive chronic myelogenous leukemia in early chronic phase (CML-CP). Blood 2007; 110: 17a.

    Google Scholar 

  22. Melnick JS, Janes J, Kim S, Chang JY, Sipes DG, Gunderson D et al. An efficient rapid system for profiling the cellular activities of molecular libraries. Proc Natl Acad Sci USA 2006; 103: 3153–3158.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Burgess MR, Skaggs BJ, Shah NP, Lee FY, Sawyers CL . Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance. Proc Natl Acad Sci USA 2005; 102: 3395–3400.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Das J, Chen P, Norris D, Padmanabha R, Lin J, Moquin RV et al. 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1- piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J Med Chem 2006; 49: 6819–6832.

    CAS  PubMed  Google Scholar 

  25. Tokarski JS, Newitt JA, Chang CY, Cheng JD, Wittekind M, Kiefer SE et al. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res 2006; 66: 5790–5797.

    CAS  PubMed  Google Scholar 

  26. O'Hare T, Eide CA, Deininger MW . Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 2007; 110: 2242–2249.

    CAS  PubMed  Google Scholar 

  27. Müller MC, Cortes J, Kim DW, Druker BJ, Erben P, Pasquini R et al. Dasatinib efficacy in patients with chronic myeloid leukemia in chronic phase (CML-CP) and pre-existing BCR-ABL mutations. Blood 2008; 112: 171.

    Google Scholar 

  28. Hughes T, Saglio G, Branford S, Soverini S, Kim DW, Müller MC et al. Impact of baseline BCR-ABL mutations on response to nilotinib in chronic myeloid leukemia patients in chronic phase (CML-CP). J Clin Oncol 2009, (in press).

  29. Kerkela R, Grazette L, Yacobi R, Iliescu C, Patten R, Beahm C et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 2006; 12: 908–916.

    PubMed  Google Scholar 

  30. Hatfield A, Owen S, Pilot PR . In reply to ‘Cardiotoxicity of the cancer therapeutic agent imatinib mesylate’. Nat Med 2007; 13: 13; author reply 15–16.

    CAS  PubMed  Google Scholar 

  31. Khakoo AY, Steinert DM, Patel SR, Plana JC, Ludwig J, Benjamin RS et al. Rare incidence of congestive heart failure (CHF) in gastrointestinal stromal tumor (GIST) and other sarcoma patients (pts) receiving imatinib mesylate (IM) therapy. J Clin Oncol 2007; 25: 551s.

    Google Scholar 

  32. Sprycel (dasatinib) [package insert]. Bristol-Myers Squibb Company. Princeton, NJ, 2007.

  33. Tasigna (nilotinib) [package insert]. Novartis Pharmaceuticals Corporation. East Hanover, NJ, 2007.

  34. Dasatinib. BMS 354825. Drugs RD 2006; 7: 129–132.

    Google Scholar 

  35. US Food and Drug Administration (FDA). Dasatinib (BMS-35825) Oncologic Drug Advisory Committee Briefing Document NDA 21–96. Bristol Myers Squibb Company: Washington, DC, 2006.

  36. Mauro MJ . Tailoring tyrosine kinase inhibitor therapy in chronic myeloid leukemia. Cancer Control 2009; 16: 108–121.

    PubMed  Google Scholar 

  37. Abram CL, Courtneidge SA . Src family tyrosine kinases and growth factor signaling. Exp Cell Res 2000; 254: 1–13.

    CAS  PubMed  Google Scholar 

  38. Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 1995; 83: 301–311.

    CAS  PubMed  Google Scholar 

  39. Saijo K, Schmedt C, Su IH, Karasuyama H, Lowell CA, Reth M et al. Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development. Nat Immunol 2003; 4: 274–279.

    CAS  PubMed  Google Scholar 

  40. Satterthwaite AB, Lowell CA, Khan WN, Sideras P, Alt FW, Witte ON . Independent and opposing roles for Btk and lyn in B and myeloid signaling pathways. J Exp Med 1998; 188: 833–844.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Karur VG, Lowell CA, Besmer P, Agosti V, Wojchowski DM . Lyn kinase promotes erythroblast expansion and late-stage development. Blood 2006; 108: 1524–1532.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Harder KW, Quilici C, Naik E, Inglese M, Kountouri N, Turner A et al. Perturbed myelo/erythropoiesis in Lyn-deficient mice is similar to that in mice lacking the inhibitory phosphatases SHP-1 and SHIP-1. Blood 2004; 104: 3901–3910.

    CAS  PubMed  Google Scholar 

  43. Snedecor SJ, Stephens JM, Carpiuc KT, Liou SY, Botteman MF . Grade 3/4 adverse events (AEs) of second generation tyrosine kinase inhibitors (TKIs) for imatinib resistant/intolerant patients in accelerated phase CML (AP-CML). J Clin Oncol 2007; 25: 682s.

    Google Scholar 

  44. Mauro MJ, Baccarani M, Cervantes F, Lipton JH, Matloub Y, Sinha V et al. Dasatinib 2-year efficacy in patients with chronic-phase chronic myelogenous leukemia (CML-CP) with resistance or intolerance to imatinib (START-C). J Clin Oncol 2008; 26: 374s.

    Google Scholar 

  45. Kantarjian HM, Giles FJ, Bhalla KN, Larson RA, Gatterman N, Ottmann OG et al. Nilotinib in patients with imatinib-resistant or -intolerant chronic myelogenous leukemia in chronic phase (CML-CP): updated phase 2 results. Haematologica 2008; 93 (Suppl 1): 350.

    Google Scholar 

  46. Shah NP, Kantarjian HM, Kim DW, Réa D, Dorlhiac-Llacer PE, Milone JH et al. Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia. J Clin Oncol 2008; 26: 3204–3212.

    CAS  PubMed  Google Scholar 

  47. Berman E, Nicolaides M, Maki RG, Fleisher M, Chanel S, Scheu K et al. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 2006; 354: 2006–2013.

    CAS  PubMed  Google Scholar 

  48. Liu F, Malaval L, Aubin JE . Global amplification polymerase chain reaction reveals novel transitional stages during osteoprogenitor differentiation. J Cell Sci 2003; 116 (Part 9): 1787–1796.

    CAS  PubMed  Google Scholar 

  49. Hock JM, Canalis E . Platelet-derived growth factor enhances bone cell replication, but not differentiated function of osteoblasts. Endocrinology 1994; 134: 1423–1428.

    CAS  PubMed  Google Scholar 

  50. Fiedler J, Etzel N, Brenner RE . To go or not to go: migration of human mesenchymal progenitor cells stimulated by isoforms of PDGF. J Cell Biochem 2004; 93: 990–998.

    CAS  PubMed  Google Scholar 

  51. Mitlak BH, Finkelman RD, Hill EL, Li J, Martin B, Smith T et al. The effect of systemically administered PDGF-BB on the rodent skeleton. J Bone Miner Res 1996; 11: 238–247.

    CAS  PubMed  Google Scholar 

  52. Chaudhary LR, Hruska KA . The cell survival signal Akt is differentially activated by PDGF-BB, EGF, and FGF-2 in osteoblastic cells. J Cell Biochem 2001; 81: 304–311.

    CAS  PubMed  Google Scholar 

  53. Teitelbaum SL . Bone resorption by osteoclasts. Science 2000; 289: 1504–1508.

    CAS  PubMed  Google Scholar 

  54. Wiktor-Jedrzejczak W, Bartocci A, Ferrante Jr AW, Ahmed-Ansari A, Sell KW, Pollard JW et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 1990; 87: 4828–4832.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dewar AL, Cambareri AC, Zannettino AC, Miller BL, Doherty KV, Hughes TP et al. Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood 2005; 105: 3127–3132.

    CAS  PubMed  Google Scholar 

  56. Zhang Z, Chen J, Jin D . Platelet-derived growth factor (PDGF)-BB stimulates osteoclastic bone resorption directly: the role of receptor beta. Biochem Biophys Res Commun 1998; 251: 190–194.

    CAS  PubMed  Google Scholar 

  57. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D . Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 2003; 111: 1287–1295.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C . Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 1999; 126: 3047–3055.

    CAS  PubMed  Google Scholar 

  59. Ostman A, Heldin CH . PDGF receptors as targets in tumor treatment. Adv Cancer Res 2007; 97: 247–274.

    PubMed  Google Scholar 

  60. Jayson GC, Parker GJ, Mullamitha S, Valle JW, Saunders M, Broughton L et al. Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab', leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 2005; 23: 973–981.

    CAS  PubMed  Google Scholar 

  61. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002; 99: 3530–3539.

    CAS  PubMed  Google Scholar 

  62. Quintas-Cardama A, Kantarjian H, O'Brien S, Borthakur G, Bruzzi J, Munden R et al. Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. J Clin Oncol 2007; 25: 3908–3914.

    CAS  PubMed  Google Scholar 

  63. Cortes J, Rousselot P, Kim DW, Ritchie E, Hamerschlak N, Coutre S et al. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood 2007; 109: 3207–3213.

    CAS  PubMed  Google Scholar 

  64. Hochhaus A, Kantarjian HM, Baccarani M, Lipton JH, Apperley JF, Druker BJ et al. Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood 2007; 109: 2303–2309.

    CAS  PubMed  Google Scholar 

  65. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 2004; 47: 6658–6661.

    CAS  PubMed  Google Scholar 

  66. Lee F, Lombardo LJ, Camuso A, Castaneda S, Fager K, Flefleh C et al. BMS-354825 potently inhibits multiple selected oncogenic tyrosine kinases and possesses broad spectrum anti-tumor activities in vitro and in vivo. Proc Am Assoc Cancer Res 2005; 46: Abstract 675.

    Google Scholar 

  67. Park YH, Park HJ, Kim BS, Ha E, Jung KH, Yoon SH et al. BNP as a marker of the heart failure in the treatment of imatinib mesylate. Cancer Lett 2006; 243: 16–22.

    CAS  PubMed  Google Scholar 

  68. Breccia M, D'Elia GM, D'Andrea M, Latagliata R, Alimena G . Pleural–pericardic effusion as uncommon complication in CML patients treated with Imatinib. Eur J Haematol 2005; 74: 89–90.

    PubMed  Google Scholar 

  69. Punnialingam S, de Lavallade H, Milojkovic D, Marco B, Khorashad JS, Goldman JM et al. Pleural effusions associated with use of dasatinib in chronic myeloid leukemia may have an auto-immune pathogenesis. Blood 2007; 110: 865a.

    Google Scholar 

  70. Cortes J, Kantarjian H, Baccarani M, Brummendorf T, Liu D, Ossenkoppele G et al. A phase 1/2 study of SKI-606, a dual inhibitor of Src and Abl kinases, in adult patients with Philadelphia chromosome positive (Ph+) chronic myelogenous leukemia (CML) or acute lymphoblastic leukemia relapsed, refractory or intolerant of imatinib. Blood 2006; 108: 54a.

    Google Scholar 

  71. Puttini M, Coluccia AM, Boschelli F, Cleris L, Marchesi E, Donella-Deana A et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells. Cancer Res 2006; 66: 11314–11322.

    CAS  PubMed  Google Scholar 

  72. Luton F, Verges M, Vaerman JP, Sudol M, Mostov KE . The SRC family protein tyrosine kinase p62yes controls polymeric IgA transcytosis in vivo. Mol Cell 1999; 4: 627–632.

    CAS  PubMed  Google Scholar 

  73. Thomas SM, Brugge JS . Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 1997; 13: 513–609.

    CAS  PubMed  Google Scholar 

  74. Carragher NO, Westhoff MA, Fincham VJ, Schaller MD, Frame MC . A novel role for FAK as a protease-targeting adaptor protein: regulation by p42 ERK and Src. Curr Biol 2003; 13: 1442–1450.

    CAS  PubMed  Google Scholar 

  75. Carragher NO, Frame MC . Calpain: a role in cell transformation and migration. Int J Biochem Cell Biol 2002; 34: 1539–1543.

    CAS  PubMed  Google Scholar 

  76. Lipton JH, Sriharsha L, Bogomilsky S, Casciaro L, Keating A, Messner H et al. Pleural effusions in patients treated with dasatinib: results from two institutions, risk factors and management. J Clin Oncol 2007; 25: 680s.

    Google Scholar 

  77. Rubin BP, Singer S, Tsao C, Duensing A, Lux ML, Ruiz R et al. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 2001; 61: 8118–8121.

    CAS  PubMed  Google Scholar 

  78. Krause DS, Van Etten RA . Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005; 353: 172–187.

    CAS  PubMed  Google Scholar 

  79. Arora B, Kumar L, Sharma A, Wadhwa J, Kochupillai V . Pigmentary changes in chronic myeloid leukemia patients treated with imatinib mesylate. Ann Oncol 2004; 15: 358–359.

    CAS  PubMed  Google Scholar 

  80. Lammie A, Drobnjak M, Gerald W, Saad A, Cote R, Cordon-Cardo C . Expression of c-kit and kit ligand proteins in normal human tissues. J Histochem Cytochem 1994; 42: 1417–1425.

    CAS  PubMed  Google Scholar 

  81. Grichnik JM, Burch JA, Burchette J, Shea CR . The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis. J Invest Dermatol 1998; 111: 233–238.

    CAS  PubMed  Google Scholar 

  82. Ratajczak MZ, Luger SM, DeRiel K, Abrahm J, Calabretta B, Gewirtz AM . Role of the KIT protooncogene in normal and malignant human hematopoiesis. Proc Natl Acad Sci 1992; 89: 1710–1714.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ashman LK . The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol 1999; 31: 1037–1051.

    CAS  PubMed  Google Scholar 

  84. Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000; 295: 139–145.

    CAS  PubMed  Google Scholar 

  85. Demetri GD . Identification and treatment of chemoresistant inoperable or metastatic GIST: experience with the selective tyrosine kinase inhibitor imatinib mesylate (STI571). Eur J Cancer 2002; 38 (Suppl 5): S52–S59.

    PubMed  Google Scholar 

  86. O'Brien SG, Guilhot F, Goldman JM, Hochhaus A, Hughes TP, Radich JP et al. International Randomized Study of Interferon Versus STI571 (IRIS) 7-year follow-up: sustained survival, low rate of transformation and increased rate of major molecular response (MMR) in patients (pts) with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) treated with imatinib (IM). Blood 2008; 112: 76.

    Google Scholar 

  87. Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 2007; 110: 3540–3546.

    CAS  PubMed  Google Scholar 

  88. Cervantes F, Baccarani M, Lipton JH, Matloub Y, Sinha R, Stone RM et al. Dasatinib long-term efficacy in patients with chronic myeloid leukemia in chronic phase (CML-CP) with resistance or intolerance to imatinib: a two-year update of the START-C study. Haematologica 2008; 93: 372.

    Google Scholar 

  89. Quintas-Cardama A, Kantarjian H, Ravandi F, Burger J, Borthakur G, Cortes J . Bleeding diathesis in patients with chronic myelogenous leukemia receiving dasatinib therapy. Blood 2007; 110: 869a.

    Google Scholar 

  90. Quintas-Cardama A, Han X, Kantarjian H, Cortes J . Dasatinib-induced platelet dysfunction. Blood 2007; 110: 864a.

    Google Scholar 

  91. Hochhaus A, Kantarjian H, Baccarani M, Le Coutre P, Haque A, Gallagher N et al. Minimal cross-intolerance between nilotinib and imatinib in patients with imatinib-intolerant chronic myelogenous leukaemia (CML) in chronic phase (CP) or accelerated phase (AP). Haematologica 2008; 93: 56–57.

    Google Scholar 

  92. Jabbour E, Hochhaus A, le Coutre P, Rosti G, Bhalla KN, Haque A et al. Minimal cross-intolerance between nilotinib and imatinib in patients with imatinib-intolerant chronic myelogenous leukemia (CML) in chronic phase (CP) or accelerated phase (AP). J Clin Oncol 2008; 26: 387s.

    Google Scholar 

  93. Guilhot F, Goldberg SL, Stone RM, Mauro MJ, Matloub Y, Chen TT . Dasatinib lack of cross intolerance to imatinib in patients with chronic myelogenous leukemia in chronic phase (CML-CP) who are intolerant to imatinib – a retrospective safety analysis. Haematologica 2008; 93: 51.

    Google Scholar 

  94. Khoury HJ, Goldberg SL, Mauro MJ, Stone RM, Matloub Y, Chen T et al. Dasatinib lack of cross intolerance to imatinib in patients with chronic myelogenous leukemia chronic phase (CML-CP) intolerant to imatinib: a retrospective analysis of safety. J Clin Oncol 2008; 26: 375s.

    Google Scholar 

  95. Rosti G, le Coutre P, Bhalla K, Giles F, Ossenkoppele G, Hochhaus A et al. A phase II study of nilotinib administered to imatinib resistant and intolerant patients with chronic myelogenous leukemia (CML) in chronic phase (CP). J Clin Oncol 2007; 25: 358s.

    Google Scholar 

  96. Abruzzese E, Alimena G, le Coutre P, Bhalla KN, Ossenkoppele GJ, Haque A et al. Nilotinib in chronic myelogenous leukemia patients who failed prior imatinib and dasatinib therapy: updated results of an open-label phase II study. J Clin Oncol 2008; 26: 385s.

    Google Scholar 

  97. Cortes JE, O'Brien SM, Ferrajoli A, Borthakur G, Burger J, Wierda W et al. Efficacy of nilotinib (AMN107) in patients (Pts) with newly diagnosed, previously untreated Philadelphia chromosome (Ph)-positive chronic myelogenous leukemia in early chronic phase (CML-CP). J Clin Oncol 2008; 26: 376s.

    Google Scholar 

  98. Giles FJ, Larson RA, Kantarjian HM, le Coutre P, Palandri F, Haque A et al. Nilotinib in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in blast crisis (CML-BC) who are resistant or intolerant to imatinib. J Clin Oncol 2008; 26: 376s.

    Google Scholar 

  99. Kantarjian HM, Giles FJ, Hochhaus A, Bhalla KN, Ossenkoppele GJ, Gattermann N et al. Nilotinib in patients with imatinib-resistant or -intolerant chronic myelogenous leukemia in chronic phase (CML-CP): updated phase 2 results. J Clin Oncol 2008; 26: 374s.

    Google Scholar 

  100. Le Coutre P, Giles FJ, Apperley J, Ottmann OG, Larson RA, Haque A et al. Nilotinib in accelerated phase chronic myelogenous leukemia (CML-AP) patients with imatinib resistance or intolerance: update of a phase II study. J Clin Oncol 2008; 26: 384s.

    Google Scholar 

  101. Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T et al. VX-680, a potent and selective small-molecule inhibitor of the aurora kinases, suppresses tumor growth in vivo. Nat Med 2004; 10: 262–267.

    CAS  PubMed  Google Scholar 

  102. Giles F, Cortes J, Bergstrom DA, Xiao A, Brostow P, Jones D et al. MK-0457, a novel aurora kinase and BCR-ABL inhibitor, is active against BCR-ABL T315I mutant chronic myelogenous leukemia (CML). Blood 2006; 108: 52a.

    Google Scholar 

  103. Kimura S, Naito H, Segawa H, Kuroda J, Yuasa T, Sato K et al. NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood 2005; 106: 3948–3954.

    CAS  PubMed  Google Scholar 

  104. Kantarjian HM, Cortes J, le Coutre P, Nagler A, Pinilla J, Hochhaus A et al. A phase I study of INNO-406 in patients with advanced Philadelphia (Ph+) chromosome-positive leukemias who are resistant or intolerant to imatinib and second-generation tyrosine kinase inhibitors. Blood 2007; 110: 144a.

    Google Scholar 

  105. Craig AR, Kantarjian HM, Cortes JE, Jones D, Hochhaus A, O'Brien S et al. A phase I study of INNO-406, a dual inhibitor of Abl and Lyn kinases, in adult patients with Philadelphia chromosome positive (Ph+) chronic myelogenous leukemia (CML) or acute lymphocytic leukemia (ALL) relapsed, refractory, or intolerant of imatinib. J Clin Oncol 2007; 25: 368s.

    Google Scholar 

  106. Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD . Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 2007; 7: 345–356.

    CAS  PubMed  Google Scholar 

  107. Force T, Krause DS, Van Etten RA . Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 2007; 7: 332–344.

    CAS  PubMed  Google Scholar 

  108. Redaelli S, Piazza R, Rostagno R, Magistroni V, Perini P, Marega M et al. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J Clin Oncol 2009; 27: 469–471.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for medical editorial assistance was provided by Novartis Pharmaceuticals. We thank Michael Mandola, PhD (Health Interactions), for medical editorial assistance with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F J Giles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giles, F., O'Dwyer, M. & Swords, R. Class effects of tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Leukemia 23, 1698–1707 (2009). https://doi.org/10.1038/leu.2009.111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.111

Keywords

This article is cited by

Search

Quick links