Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells

Abstract

The detailed molecular mechanism of action of second-generation BCR–ABL tyrosine kinase inhibitors, including perturbed targets and pathways, should contribute to rationalized therapy in chronic myeloid leukemia (CML) or in other affected diseases. Here, we characterized the target profile of the dual SRC/ABL inhibitor bosutinib employing a two-tiered approach using chemical proteomics to identify natural binders in whole cell lysates of primary CML and K562 cells in parallel to in vitro kinase assays against a large recombinant kinase panel. The combined strategy resulted in a global survey of bosutinib targets comprised of over 45 novel tyrosine and serine/threonine kinases. We have found clear differences in the target patterns of bosutinib in primary CML cells versus the K562 cell line. A comparison of bosutinib with dasatinib across the whole kinase panel revealed overlapping, but distinct, inhibition profiles. Common among those were the SRC, ABL and TEC family kinases. Bosutinib did not inhibit KIT or platelet-derived growth factor receptor, but prominently targeted the apoptosis-linked STE20 kinases. Although in vivo bosutinib is inactive against ABL T315I, we found this clinically important mutant to be enzymatically inhibited in the mid-nanomolar range. Finally, bosutinib is the first kinase inhibitor shown to target CAMK2G, recently implicated in myeloid leukemia cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Jabbour E, Cortes JE, Giles FJ, O’Brien S, Kantarjian HM . Current and emerging treatment options in chronic myeloid leukemia. Cancer 2007; 109: 2171–2181.

    Article  CAS  PubMed  Google Scholar 

  2. Druker BJ . Imatinib as a paradigm of targeted therapies. Adv Cancer Res 2004; 91: 1–30.

    Article  CAS  PubMed  Google Scholar 

  3. Druker BJ . Circumventing resistance to kinase-inhibitor therapy. N Engl J Med 2006; 354: 2594–2596.

    Article  CAS  PubMed  Google Scholar 

  4. Shah NP, Sawyers CL . Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene 2003; 22: 7389–7395.

    Article  CAS  PubMed  Google Scholar 

  5. Kantarjian H, Giles F, Wunderle L, Bhalla K, O’Brien S, Wassmann B et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006; 354: 2542–2551.

    Article  PubMed  Google Scholar 

  6. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 2004; 47: 6658–6661.

    Article  CAS  PubMed  Google Scholar 

  7. Quintas-Cardama A, Kantarjian H, Cortes J . Flying under the radar: the new wave of BCR-ABL inhibitors. Nat Rev Drug Discov 2007; 6: 834–848.

    Article  CAS  PubMed  Google Scholar 

  8. Puttini M, Coluccia AM, Boschelli F, Cleris L, Marchesi E, Donella-Deana A et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells. Cancer Res 2006; 66: 11314–11322.

    Article  CAS  PubMed  Google Scholar 

  9. Vultur A, Buettner R, Kowolik C, Liang W, Smith D, Boschelli F et al. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol Cancer Ther 2008; 7: 1185–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Konig H, Holyoake TL, Bhatia R . Effective and selective inhibition of chronic myeloid leukemia primitive hematopoietic progenitors by the dual Src/Abl kinase inhibitor SKI-606. Blood 2008; 111: 2329–2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 2007; 25: 1035–1044.

    Article  CAS  PubMed  Google Scholar 

  12. Fabian MA, Biggs III WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 2005; 23: 329–336.

    Article  CAS  PubMed  Google Scholar 

  13. Hantschel O, Rix U, Superti-Furga G . Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leuk Lymphoma 2008; 49: 615–619.

    Article  CAS  PubMed  Google Scholar 

  14. Rix U, Hantschel O, Durnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV et al. Chemical proteomic profiles of the BCR–ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and non-kinase targets. Blood 2007; 110: 4055–4063.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang YX, Knyazev PG, Cheburkin YV, Sharma K, Knyazev YP, Orfi L et al. AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Res 2008; 68: 1905–1915.

    Article  CAS  PubMed  Google Scholar 

  16. Hantschel O, Rix U, Schmidt U, Burckstummer T, Kneidinger M, Schutze G et al. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc Natl Acad Sci USA 2007; 104: 13283–13288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lindvall JM, Blomberg KE, Valiaho J, Vargas L, Heinonen JE, Berglof A et al. Bruton's tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol Rev 2005; 203: 200–215.

    Article  CAS  PubMed  Google Scholar 

  18. Si J, Collins SJ . Activated Ca2+/calmodulin-dependent protein kinase IIgamma is a critical regulator of myeloid leukemia cell proliferation. Cancer Res 2008; 68: 3733–3742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maxwell SA, Kurzrock R, Parsons SJ, Talpaz M, Gallick GE, Kloetzer WS et al. Analysis of P210bcr-abl tyrosine protein kinase activity in various subtypes of Philadelphia chromosome-positive cells from chronic myelogenous leukemia patients. Cancer Res 1987; 47: 1731–1739.

    CAS  PubMed  Google Scholar 

  20. Thaimattam R, Daga PR, Banerjee R, Iqbal J . 3D-QSAR studies on c-Src kinase inhibitors and docking analyses of a potent dual kinase inhibitor of c-Src and c-Abl kinases. Bioorg Med Chem 2005; 13: 4704–4712.

    Article  CAS  PubMed  Google Scholar 

  21. van der Horst EH, Degenhardt YY, Strelow A, Slavin A, Chinn L, Orf J et al. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci USA 2005; 102: 15901–15906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA 2007; 104: 8438–8443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Howlin J, Rosenkvist J, Andersson T . TNK2 preserves epidermal growth factor receptor expression on the cell surface and enhances migration and invasion of human breast cancer cells. Breast Cancer Res 2008; 10: R36.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chu S, Holtz M, Gupta M, Bhatia R . BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood 2004; 103: 3167–3174.

    Article  CAS  PubMed  Google Scholar 

  25. Ling P, Lu TJ, Yuan CJ, Lai MD . Biosignaling of mammalian Ste20-related kinases. Cell Signal 2008; 20: 1237–1247.

    Article  CAS  PubMed  Google Scholar 

  26. Pombo CM, Force T, Kyriakis J, Nogueira E, Fidalgo M, Zalvide J . The GCK II and III subfamilies of the STE20 group kinases. Front Biosci 2007; 12: 850–859.

    Article  CAS  PubMed  Google Scholar 

  27. Kruttgen A, Schneider I, Weis J . The dark side of the NGF family: neurotrophins in neoplasias. Brain Pathol 2006; 16: 304–310.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gribble SM, Roberts I, Grace C, Andrews KM, Green AR, Nacheva EP . Cytogenetics of the chronic myeloid leukemia-derived cell line K562: karyotype clarification by multicolor fluorescence in situ hybridization, comparative genomic hybridization, and locus-specific fluorescence in situ hybridization. Cancer Genet Cytogenet 2000; 118: 1–8.

    Article  CAS  PubMed  Google Scholar 

  29. Guo JQ, Lin H, Kantarjian H, Talpaz M, Champlin R, Andreeff M et al. Comparison of competitive-nested PCR and real-time PCR in detecting BCR-ABL fusion transcripts in chronic myeloid leukemia patients. Leukemia 2002; 16: 2447–2453.

    Article  CAS  PubMed  Google Scholar 

  30. Gambacorti-Passerini C, Kantarjian H, Bruemmendorf T, Martinelli G, Baccarani M, Fischer T et al. Bosutinib (SKI-606) demonstrates clinical activity and is well tolerated among patients with AP and BP CML and Ph+ ALL. ASH Ann Meeting Abstr 2007; 473.

  31. Engelman JA, Janne PA . Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res 2008; 14: 2895–2899.

    Article  PubMed  Google Scholar 

  32. Ciardiello F, Tortora G . EGFR antagonists in cancer treatment. N Engl J Med 2008; 358: 1160–1174.

    Article  CAS  PubMed  Google Scholar 

  33. Voisset E, Lopez S, Dubreuil P, De Sepulveda P . The tyrosine kinase FES is an essential effector of KITD816V proliferation signal. Blood 2007; 110: 2593–2599.

    Article  CAS  PubMed  Google Scholar 

  34. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006; 354: 2531–2541.

    Article  CAS  PubMed  Google Scholar 

  35. Golas JM, Arndt K, Etienne C, Lucas J, Nardin D, Gibbons J et al. SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res 2003; 63: 375–381.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Leukemia and Lymphoma Society (Grant number 5081-05), the Austrian federal ministry for science and research bmwf under the GEN-AU program (GZ200.142/I-VI/I/2006 and GZ200.145/I-VI/I/2006), the Austrian Science Fund (FWF; P18737-B11), the Austrian National Bank (ÖNB) and the Austrian Academy of Sciences (ÖAW). We thank Melanie Planyavsky for preparation of the SDS-PAGE gels, Gerhard Dürnberger for assistance in bioinformatics analyses and the Superti-Furga group for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Superti-Furga.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remsing Rix, L., Rix, U., Colinge, J. et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia 23, 477–485 (2009). https://doi.org/10.1038/leu.2008.334

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.334

Keywords

This article is cited by

Search

Quick links