Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Inhibitor of apoptosis proteins in hematological malignancies

Abstract

Apoptosis or programmed cell death is a key mechanism to control tissue homeostasis, for example, in the hematopoietic system. Thus, resistance to apoptosis can contribute to the development of leukemia or lymphoma. Inhibitors of apoptosis (IAP) proteins block cell death pathways at a central node by interfering with the activation of effector caspases. As increased expression levels of IAPs are found in hematological malignancies and have been correlated with poor prognosis, IAPs could be exploited as therapeutic targets and prognostic markers. Various strategies have been developed to target IAPs for therapeutic purposes in leukemia and lymphoma cells, including small-molecule inhibitors and antisense oligonucleotides. These agents could directly induce apoptosis in malignant cells or sensitize these cells to other cytotoxic agents. Thus, IAPs present promising targets for the development of new biomarkers and cancer therapeutics in hematological malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hengartner MO . The biochemistry of apoptosis. Nature 2000; 407: 770–776.

    CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  3. Reed JC, Pellecchia M . Apoptosis-based therapies for hematologic malignancies. Blood 2005; 106: 408–418.

    CAS  PubMed  Google Scholar 

  4. Schimmer AD . Apoptosis in leukemia: from molecular pathways to targeted therapies. Best Pract Res Clin Haematol 2008; 21: 5–11.

    CAS  PubMed  Google Scholar 

  5. Johnstone RW, Ruefli AA, Lowe SW . Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002; 108: 153–164.

    CAS  PubMed  Google Scholar 

  6. Evan GI, Vousden KH . Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411: 342–348.

    CAS  PubMed  Google Scholar 

  7. Taylor K, Micha D, Ranson M, Dive C . Recent advances in targeting regulators of apoptosis in cancer cells for therapeutic gain. Expert Opin Investig Drugs 2006; 15: 669–690.

    CAS  PubMed  Google Scholar 

  8. Fulda S, Debatin KM . Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25: 4798–4811.

    CAS  PubMed  Google Scholar 

  9. Degterev A, Boyce M, Yuan J . A decade of caspases. Oncogene 2003; 22: 8543–8567.

    CAS  PubMed  Google Scholar 

  10. Falschlehner C, Emmerich CH, Gerlach B, Walczak H . TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 2007; 39: 1462–1475.

    CAS  PubMed  Google Scholar 

  11. Peter ME, Krammer PH . The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 2003; 10: 26–35.

    CAS  PubMed  Google Scholar 

  12. Kroemer G, Galluzzi L, Brenner C . Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87: 99–163.

    CAS  PubMed  Google Scholar 

  13. Riedl SJ, Salvesen GS . The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 2007; 8: 405–413.

    CAS  PubMed  Google Scholar 

  14. Du C, Fang M, Li Y, Li L, Wang X . Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33–42.

    CAS  PubMed  Google Scholar 

  15. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43–53.

    CAS  PubMed  Google Scholar 

  16. Hunter AM, LaCasse EC, Korneluk RG . The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 2007; 12: 1543–1568.

    CAS  PubMed  Google Scholar 

  17. Salvesen GS, Duckett CS . IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 2002; 3: 401–410.

    CAS  PubMed  Google Scholar 

  18. Vaux DL, Silke J . IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 2005; 6: 287–297.

    CAS  PubMed  Google Scholar 

  19. Damiano JS, Reed JC . CARD proteins as therapeutic targets in cancer. Curr Drug Targets 2004; 5: 367–374.

    CAS  PubMed  Google Scholar 

  20. Eckelman BP, Salvesen GS, Scott FL . Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 2006; 7: 988–994.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shiozaki EN, Shi Y . Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci 2004; 29: 486–494.

    CAS  PubMed  Google Scholar 

  22. Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES et al. Structural basis of caspase-7 inhibition by XIAP. Cell 2001; 104: 769–780.

    CAS  PubMed  Google Scholar 

  23. Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 2001; 104: 791–800.

    CAS  PubMed  Google Scholar 

  24. Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H . Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 2001; 104: 781–790.

    CAS  PubMed  Google Scholar 

  25. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001; 410: 112–116.

    CAS  PubMed  Google Scholar 

  26. Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 2003; 11: 519–527.

    CAS  PubMed  Google Scholar 

  27. Lu M, Lin S-C, Huang Y, Kang YJ, Rich R, Lo Y-C et al. XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell 2007; 26: 689–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hofer-Warbinek R, Schmid JA, Stehlik C, Binder BR, Lipp J, de Martin R . Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J Biol Chem 2000; 275: 22064–22068.

    CAS  PubMed  Google Scholar 

  29. Levkau B, Garton KJ, Ferri N, Kloke K, Nofer JR, Baba HA et al. xIAP induces cell-cycle arrest and activates nuclear factor-kappaB: new survival pathways disabled by caspase-mediated cleavage during apoptosis of human endothelial cells. Circ Res 2001; 88: 282–290.

    CAS  PubMed  Google Scholar 

  30. Lewis J, Burstein E, Reffey SB, Bratton SB, Roberts AB, Duckett CS . Uncoupling of the signaling and caspase-inhibitory properties of X-linked inhibitor of apoptosis. J Biol Chem 2004; 279: 9023–9029.

    CAS  PubMed  Google Scholar 

  31. Birkey Reffey S, Wurthner JU, Parks WT, Roberts AB, Duckett CS . X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-beta signaling. J Biol Chem 2001; 276: 26542–26549.

    CAS  PubMed  Google Scholar 

  32. Huang H, Joazeiro CA, Bonfoco E, Kamada S, Leverson JD, Hunter T . The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem 2000; 275: 26661–26664.

    CAS  PubMed  Google Scholar 

  33. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008; 30: 689–700.

    CAS  PubMed  Google Scholar 

  34. Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K et al. c-IAP1 and c-IAP2 are critical mediators of TNFalpha-induced NF-kappa B activation. J Biol Chem 2008; 283: 24295–24299.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci USA 2008; 105: 11778–11783.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wertz IE, Dixit VM . Ubiquitin-mediated regulation of TNFR1 signaling. Cytokine Growth Factor Rev 2008; 19: 313–324.

    CAS  PubMed  Google Scholar 

  37. Xu L, Zhu J, Hu X, Zhu H, Kim HT, LaBaer J et al. c-IAP1 cooperates with Myc by acting as a ubiquitin ligase for Mad1. Mol Cell 2007; 28: 914–922.

    CAS  PubMed  Google Scholar 

  38. Kasof GM, Gomes BC . Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem 2001; 276: 3238–3246.

    CAS  PubMed  Google Scholar 

  39. Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM . ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol 2000; 10: 1359–1366.

    CAS  PubMed  Google Scholar 

  40. Ashhab Y, Alian A, Polliack A, Panet A, Ben Yehuda D . Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett 2001; 495: 56–60.

    CAS  PubMed  Google Scholar 

  41. Chang H, Schimmer AD . Livin/melanoma inhibitor of apoptosis protein as a potential therapeutic target for the treatment of malignancy. Mol Cancer Ther 2007; 6: 24–30.

    CAS  PubMed  Google Scholar 

  42. Vucic D, Deshayes K, Ackerly H, Pisabarro MT, Kadkhodayan S, Fairbrother WJ et al. SMAC negatively regulates the anti-apoptotic activity of melanoma inhibitor of apoptosis (ML-IAP). J Biol Chem 2002; 277: 12275–12279.

    CAS  PubMed  Google Scholar 

  43. Vucic D, Franklin MC, Wallweber HJA, Das K, Eckelman BP, Shin H et al. Engineering ML-IAP to produce an extraordinarily potent caspase 9 inhibitor: implications for Smac-dependent anti-apoptotic activity of ML-IAP. Biochem J 2005; 385: 11–20.

    CAS  PubMed  Google Scholar 

  44. Sanna MG, da Silva Correia J, Ducrey O, Lee J, Nomoto K, Schrantz N et al. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol Cell Biol 2002; 22: 1754–1766.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nachmias B, Ashhab Y, Bucholtz V, Drize O, Kadouri L, Lotem M et al. Caspase-mediated cleavage converts Livin from an antiapoptotic to a proapoptotic factor: implications for drug-resistant melanoma. Cancer Res 2003; 63: 6340–6349.

    CAS  PubMed  Google Scholar 

  46. Nachmias B, Lazar I, Elmalech M, Abed-El-Rahaman I, Asshab Y, Mandelboim O et al. Subcellular localization determines the delicate balance between the anti- and pro-apoptotic activity of Livin. Apoptosis 2007; 12: 1129–1142.

    CAS  PubMed  Google Scholar 

  47. Altieri DC . Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 2008; 8: 61–70.

    CAS  PubMed  Google Scholar 

  48. O’Connor DS, Wall NR, Porter AC, Altieri DC . A p34(cdc2) survival checkpoint in cancer. Cancer Cell 2002; 2: 43–54.

    PubMed  Google Scholar 

  49. Wall NR, O’Connor DS, Plescia J, Pommier Y, Altieri DC . Suppression of survivin phosphorylation on Thr34 by flavopiridol enhances tumor cell apoptosis. Cancer Res 2003; 63: 230–235.

    CAS  PubMed  Google Scholar 

  50. Song Z, Yao X, Wu M . Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem 2003; 278: 23130–23140.

    CAS  PubMed  Google Scholar 

  51. Blanc-Brude OP, Mesri M, Wall NR, Plescia J, Dohi T, Altieri DC . Therapeutic targeting of the survivin pathway in cancer: initiation of mitochondrial apoptosis and suppression of tumor-associated angiogenesis. Clin Cancer Res 2003; 9: 2683–2692.

    CAS  PubMed  Google Scholar 

  52. Dohi T, Okada K, Xia F, Wilford CE, Samuel T, Welsh K et al. An IAP-IAP complex inhibits apoptosis. J Biol Chem 2004; 279: 34087–34090.

    CAS  PubMed  Google Scholar 

  53. Vaux DL, Silke J . Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun 2003; 304: 499–504.

    CAS  PubMed  Google Scholar 

  54. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 2000; 408: 1008–1012.

    CAS  PubMed  Google Scholar 

  55. Huang Y, Rich RL, Myszka DG, Wu H . Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by Smac. J Biol Chem 2003; 278: 49517–49522.

    CAS  PubMed  Google Scholar 

  56. Vande Walle L, Lamkanfi M, Vandenabeele P . The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death Differ 2008; 15: 453–460.

    CAS  PubMed  Google Scholar 

  57. Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 2002; 277: 439–444.

    CAS  PubMed  Google Scholar 

  58. Suzuki Y, Takahashi-Niki K, Akagi T, Hashikawa T, Takahashi R . Mitochondrial protease Omi/HtrA2 enhances caspase activation through multiple pathways. Cell Death Differ 2004; 11: 208–216.

    CAS  PubMed  Google Scholar 

  59. Van Loo G, Van Gurp M, Depuydt B, Srinivasula SM, Rodriguez I, Alnemri ES et al. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 2002; 9: 20–26.

    CAS  PubMed  Google Scholar 

  60. Li W, Srinivasula SM, Chai J, Li P, Wu JW, Zhang Z et al. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat Struct Biol 2002; 9: 436–441.

    CAS  PubMed  Google Scholar 

  61. Liston P, Fong WG, Kelly NL, Toji S, Miyazaki T, Conte D et al. Identification of XAF1 as an antagonist of XIAP anti-caspase activity. Nat Cell Biol 2001; 3: 128–133.

    CAS  PubMed  Google Scholar 

  62. Plenchette S, Cheung HH, Fong WG, LaCasse EC, Korneluk RG . The role of XAF1 in cancer. Curr Opin Investig Drugs 2007; 8: 469–476.

    CAS  PubMed  Google Scholar 

  63. Arora V, Cheung HH, Plenchette S, Micali OC, Liston P, Korneluk RG . Degradation of survivin by the X-linked inhibitor of apoptosis (XIAP)–XAF1 complex. J Biol Chem 2007; 282: 26202–26209.

    CAS  PubMed  Google Scholar 

  64. Leaman DW, Chawla-Sarkar M, Vyas K, Reheman M, Tamai K, Toji S et al. Identification of X-linked inhibitor of apoptosis-associated factor-1 as an interferon-stimulated gene that augments TRAIL Apo2L-induced apoptosis. J Biol Chem 2002; 277: 28504–28511.

    CAS  PubMed  Google Scholar 

  65. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007; 131: 669–681.

    CAS  PubMed  Google Scholar 

  66. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007; 131: 682–693.

    CAS  PubMed  Google Scholar 

  67. Petersen SL, Wang L, Yalcin-Chin A, Li L, Peyton M, Minna J et al. Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 2007; 12: 445–456.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gaither A, Porter D, Yao Y, Borawski J, Yang G, Donovan J et al. A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling. Cancer Res 2007; 67: 11493–11498.

    CAS  PubMed  Google Scholar 

  69. Oost TK, Sun C, Armstrong RC, Al-Assaad AS, Betz SF, Deckwerth TL et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 2004; 47: 4417–4426.

    CAS  PubMed  Google Scholar 

  70. Bockbrader KM, Tan M, Sun Y . A small molecule Smac-mimic compound induces apoptosis and sensitizes TRAIL- and etoposide-induced apoptosis in breast cancer cells. Oncogene 2005; 24: 7381–7388.

    CAS  PubMed  Google Scholar 

  71. Schimmer AD, Welsh K, Pinilla C, Wang Z, Krajewska M, Bonneau MJ et al. Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 2004; 5: 25–35.

    CAS  PubMed  Google Scholar 

  72. LaCasse EC, Kandimalla ER, Winocour P, Sullivan T, Agrawal S, Gillard JW et al. Application of XIAP antisense to cancer and other proliferative disorders: development of AEG35156/GEM640. Ann N Y Acad Sci 2005; 1058: 215–234.

    CAS  PubMed  Google Scholar 

  73. Nakahara T, Takeuchi M, Kinoyama I, Minematsu T, Shirasuna K, Matsuhisa A et al. YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res 2007; 67: 8014–8021.

    CAS  PubMed  Google Scholar 

  74. Chang CC, Heller JD, Kuo J, Huang RC . Tetra-O-methyl nordihydroguaiaretic acid induces growth arrest and cellular apoptosis by inhibiting Cdc2 and survivin expression. Proc Natl Acad Sci USA 2004; 101: 13239–13244.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 1999; 93: 3601–3609.

    CAS  PubMed  Google Scholar 

  76. Akagi T, Motegi M, Tamura A, Suzuki R, Hosokawa Y, Suzuki H et al. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 1999; 18: 5785–5794.

    CAS  PubMed  Google Scholar 

  77. Morgan JA, Yin Y, Borowsky AD, Kuo F, Nourmand N, Koontz JI et al. Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res 1999; 59: 6205–6213.

    CAS  PubMed  Google Scholar 

  78. Varfolomeev E, Wayson SM, Dixit VM, Fairbrother WJ, Vucic D . The inhibitor of apoptosis protein fusion c-IAP2.MALT1 stimulates NF-kappaB activation independently of TRAF1 AND TRAF2. J Biol Chem 2006; 281: 29022–29029.

    CAS  PubMed  Google Scholar 

  79. Waldele K, Silbermann K, Schneider G, Ruckes T, Cullen BR, Grassmann R . Requirement of the human T-cell leukemia virus (HTLV-1) tax-stimulated HIAP-1 gene for the survival of transformed lymphocytes. Blood 2006; 107: 4491–4499.

    PubMed  Google Scholar 

  80. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12: 115–130.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007; 12: 131–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hasegawa T, Suzuki K, Sakamoto C, Ohta K, Nishiki S, Hino M et al. Expression of the inhibitor of apoptosis (IAP) family members in human neutrophils: up-regulation of cIAP2 by granulocyte colony-stimulating factor and overexpression of cIAP2 in chronic neutrophilic leukemia. Blood 2003; 101: 1164–1171.

    CAS  PubMed  Google Scholar 

  83. Plenchette S, Cathelin S, Rebe C, Launay S, Ladoire S, Sordet O et al. Translocation of the inhibitor of apoptosis protein c-IAP1 from the nucleus to the Golgi in hematopoietic cells undergoing differentiation: a nuclear export signal-mediated event. Blood 2004; 104: 2035–2043.

    CAS  PubMed  Google Scholar 

  84. Didelot C, Lanneau D, Brunet M, Bouchot A, Cartier J, Jacquel A et al. Interaction of heat-shock protein 90 beta isoform (HSP90 beta) with cellular inhibitor of apoptosis 1 (c-IAP1) is required for cell differentiation. Cell Death Differ 2008; 15: 859–866.

    CAS  PubMed  Google Scholar 

  85. De Graaf AO, van Krieken JH, Tonnissen E, Wissink W, van de Locht L, Overes I et al. Expression of C-IAP1, C-IAP2 and SURVIVIN discriminates different types of lymphoid malignancies. Br J Haematol 2005; 130: 852–859.

    CAS  PubMed  Google Scholar 

  86. Vallat L, Magdelenat H, Merle-Beral H, Masdehors P, Potocki de Montalk G, Davi F et al. The resistance of B-CLL cells to DNA damage-induced apoptosis defined by DNA microarrays. Blood 2003; 101: 4598–4606.

    CAS  PubMed  Google Scholar 

  87. Silva KL, Vasconcellos DV, Castro ED, Coelho AM, Linden R, Maia RC . Apoptotic effect of fludarabine is independent of expression of IAPs in B-cell chronic lymphocytic leukemia. Apoptosis 2006; 11: 277–285.

    CAS  PubMed  Google Scholar 

  88. Nakagawa Y, Hasegawa M, Kurata M, Yamamoto K, Abe S, Inoue M et al. Expression of IAP-family proteins in adult acute mixed lineage leukemia (AMLL). Am J Hematol 2005; 78: 173–180.

    CAS  PubMed  Google Scholar 

  89. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 2000; 6: 1796–1803.

    CAS  PubMed  Google Scholar 

  90. Carter BZ, Kornblau SM, Tsao T, Wang RY, Schober WD, Milella M et al. Caspase-independent cell death in AML: caspase inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or survivin does not affect cell survival or prognosis. Blood 2003; 102: 4179–4186.

    CAS  PubMed  Google Scholar 

  91. Tamm I, Richter S, Scholz F, Schmelz K, Oltersdorf D, Karawajew L et al. XIAP expression correlates with monocytic differentiation in adult de novo AML: impact on prognosis. Hematol J 2004; 5: 489–495.

    CAS  PubMed  Google Scholar 

  92. Tamm I, Richter S, Oltersdorf D, Creutzig U, Harbott J, Scholz F et al. High expression levels of X-linked inhibitor of apoptosis protein and survivin correlate with poor overall survival in childhood de novo acute myeloid leukemia. Clin Cancer Res 2004; 10: 3737–3744.

    CAS  PubMed  Google Scholar 

  93. Velculescu VE, Madden SL, Zhang L, Lash AE, Yu J, Rago C et al. Analysis of human transcriptomes. Nat Genet 1999; 23: 387–388.

    CAS  PubMed  Google Scholar 

  94. Fukuda S, Pelus LM . Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther 2006; 5: 1087–1098.

    CAS  PubMed  Google Scholar 

  95. Schlette EJ, Medeiros LJ, Goy A, Lai R, Rassidakis GZ . Survivin expression predicts poorer prognosis in anaplastic large-cell lymphoma. J Clin Oncol 2004; 22: 1682–1688.

    CAS  PubMed  Google Scholar 

  96. Adida C, Haioun C, Gaulard P, Lepage E, Morel P, Briere J et al. Prognostic significance of survivin expression in diffuse large B-cell lymphomas. Blood 2000; 96: 1921–1925.

    CAS  PubMed  Google Scholar 

  97. Balkhi MY, Christopeit M, Chen Y, Geletu M, Behre G . AML1/ETO-induced survivin expression inhibits transcriptional regulation of myeloid differentiation. Exp Hematol 2008; 36: 1455–1466.

    Google Scholar 

  98. Troeger A, Siepermann M, Escherich G, Meisel R, Willers R, Gudowius S et al. Survivin and its prognostic significance in pediatric acute B-cell precursor lymphoblastic leukemia. Haematologica 2007; 92: 1043–1050.

    CAS  PubMed  Google Scholar 

  99. Troger A, Siepermann M, Mahotka C, Wethkamp N, Bulle H, Laws HJ et al. Role of survivin splice variants in pediatric acute precursor B lymphoblastic leukemia. Klin Padiatr 2007; 219: 127–133.

    CAS  PubMed  Google Scholar 

  100. Romagnoli M, Trichet V, David C, Clement M, Moreau P, Bataille R et al. Significant impact of survivin on myeloma cell growth. Leukemia 2007; 21: 1070–1078.

    CAS  PubMed  Google Scholar 

  101. Che XF, Zheng CL, Owatari S, Mutoh M, Gotanda T, Jeung HC et al. Overexpression of survivin in primary ATL cells and sodium arsenite induces apoptosis by down-regulating survivin expression in ATL cell lines. Blood 2006; 107: 4880–4887.

    CAS  PubMed  Google Scholar 

  102. Nakayama K, Kamihira S . Survivin an important determinant for prognosis in adult T-cell leukemia: a novel biomarker in practical hemato-oncology. Leuk Lymphoma 2002; 43: 2249–2255.

    CAS  PubMed  Google Scholar 

  103. Wang Z, Sampath J, Fukuda S, Pelus LM . Disruption of the inhibitor of apoptosis protein survivin sensitizes Bcr-abl-positive cells to STI571-induced apoptosis. Cancer Res 2005; 65: 8224–8232.

    CAS  PubMed  Google Scholar 

  104. Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2777–2783.

    CAS  PubMed  Google Scholar 

  105. Choi J, Hwang YK, Sung KW, Lee SH, Yoo KH, Jung HL et al. Expression of livin, an antiapoptotic protein, is an independent favorable prognostic factor in childhood acute lymphoblastic leukemia. Blood 2007; 109: 471–477.

    CAS  PubMed  Google Scholar 

  106. Arico M, Valsecchi MG, Camitta B, Schrappe M, Chessells J, Baruchel A et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 2000; 342: 998–1006.

    CAS  PubMed  Google Scholar 

  107. Pui CH, Behm FG, Downing JR, Hancock ML, Shurtleff SA, Ribeiro RC et al. 11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. J Clin Oncol 1994; 12: 909–915.

    CAS  PubMed  Google Scholar 

  108. Chen CS, Sorensen PH, Domer PH, Reaman GH, Korsmeyer SJ, Heerema NA et al. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood 1993; 81: 2386–2393.

    CAS  PubMed  Google Scholar 

  109. Ren Y, Akyurek N, Schlette E, Rassidakis GZ, Medeiros LJ . Expression of Smac/DIABLO in B-cell non-Hodgkin and Hodgkin lymphomas. Hum Pathol 2006; 37: 1407–1413.

    CAS  PubMed  Google Scholar 

  110. Fong WG, Liston P, Rajcan-Separovic E, St Jean M, Craig C, Korneluk RG . Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics 2000; 70: 113–122.

    CAS  PubMed  Google Scholar 

  111. Ng KC, Campos EI, Martinka M, Li G . XAF1 expression is significantly reduced in human melanoma. J Invest Dermatol 2004; 123: 1127–1134.

    CAS  PubMed  Google Scholar 

  112. Byun DS, Cho K, Ryu BK, Lee MG, Kang MJ, Kim HR et al. Hypermethylation of XIAP-associated factor 1, a putative tumor suppressor gene from the 17p13.2 locus, in human gastric adenocarcinomas. Cancer Res 2003; 63: 7068–7075.

    CAS  PubMed  Google Scholar 

  113. Zou B, Chim CS, Zeng H, Leung SY, Yang Y, Tu SP et al. Correlation between the single-site CpG methylation and expression silencing of the XAF1 gene in human gastric and colon cancers. Gastroenterology 2006; 131: 1835–1843.

    CAS  PubMed  Google Scholar 

  114. Chen G-H, Lin F-R, Ren J-H, Chen J, Zhang J-N, Wang Y et al. Expression and significance of X-linked inhibitor of apoptosis protein and its antagonized proteins in acute leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2006; 14: 639–643.

    CAS  PubMed  Google Scholar 

  115. Zent CS, Zhan F, Schichman SA, Bumm KH, Lin P, Chen JB et al. The distinct gene expression profiles of chronic lymphocytic leukemia and multiple myeloma suggest different anti-apoptotic mechanisms but predict only some differences in phenotype. Leuk Res 2003; 27: 765–774.

    CAS  PubMed  Google Scholar 

  116. Zobel K, Wang L, Varfolomeev E, Franklin MC, Elliott LO, Wallweber HJ et al. Design, synthesis, and biological activity of a potent Smac mimetic that sensitizes cancer cells to apoptosis by antagonizing IAPs. ACS Chem Biol 2006; 1: 525–533.

    CAS  PubMed  Google Scholar 

  117. Sun H, Nikolovska-Coleska Z, Lu J, Qiu S, Yang CY, Gao W et al. Design, synthesis, and evaluation of a potent, cell-permeable, conformationally constrained second mitochondria derived activator of caspase (Smac) mimetic. J Med Chem 2006; 49: 7916–7920.

    CAS  PubMed  Google Scholar 

  118. Sun H, Nikolovska-Coleska Z, Chen J, Yang CY, Tomita Y, Pan H et al. Structure-based design, synthesis and biochemical testing of novel and potent Smac peptido-mimetics. Bioorg Med Chem Lett 2005; 15: 793–797.

    CAS  PubMed  Google Scholar 

  119. Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG . A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 2004; 305: 1471–1474.

    CAS  PubMed  Google Scholar 

  120. Fulda S, Wick W, Weller M, Debatin KM . Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002; 8: 808–815.

    CAS  PubMed  Google Scholar 

  121. Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH . Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 2002; 277: 44236–44243.

    CAS  PubMed  Google Scholar 

  122. Yang L, Mashima T, Sato S, Mochizuki M, Sakamoto H, Yamori T et al. Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res 2003; 63: 831–837.

    CAS  PubMed  Google Scholar 

  123. Guo F, Nimmanapalli R, Paranawithana S, Wittman S, Griffin D, Bali P et al. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 2002; 99: 3419–3426.

    CAS  PubMed  Google Scholar 

  124. Chauhan D, Neri P, Velankar M, Podar K, Hideshima T, Fulciniti M et al. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 2007; 109: 1220–1227.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Jia L, Patwari Y, Kelsey SM, Srinivasula SM, Agrawal SG, Alnemri ES et al. Role of Smac in human leukaemic cell apoptosis and proliferation. Oncogene 2003; 22: 1589–1599.

    CAS  PubMed  Google Scholar 

  126. Kashkar H, Seeger JM, Hombach A, Deggerich A, Yazdanpanah B, Utermohlen O et al. XIAP targeting sensitizes Hodgkin lymphoma cells for cytolytic T-cell attack. Blood 2006; 108: 3434–3440.

    CAS  PubMed  Google Scholar 

  127. Kashkar H, Haefs C, Shin H, Hamilton-Dutoit SJ, Salvesen GS, Kronke M et al. XIAP-mediated caspase inhibition in Hodgkin's lymphoma-derived B cells. J Exp Med 2003; 198: 341–347.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Yang QH, Du C . Smac/DIABLO selectively reduces the levels of c-IAP1 and c-IAP2 but not that of XIAP and livin in HeLa cells. J Biol Chem 2004; 279: 16963–16970.

    CAS  PubMed  Google Scholar 

  129. Weisberg E, Kung AL, Wright RD, Moreno D, Catley L, Ray A et al. Potentiation of antileukemic therapies by Smac mimetic, LBW242: effects on mutant FLT3-expressing cells. Mol Cancer Ther 2007; 6: 1951–1961.

    CAS  PubMed  Google Scholar 

  130. Nikolovska-Coleska Z, Xu L, Hu Z, Tomita Y, Li P, Roller PP et al. Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem 2004; 47: 2430–2440.

    CAS  PubMed  Google Scholar 

  131. Wang Z, Cuddy M, Samuel T, Welsh K, Schimmer A, Hanaii F et al. Cellular, biochemical, and genetic analysis of mechanism of small molecule IAP inhibitors. J Biol Chem 2004; 279: 48168–48176.

    CAS  PubMed  Google Scholar 

  132. Carter BZ, Gronda M, Wang Z, Welsh K, Pinilla C, Andreeff M et al. Small-molecule XIAP inhibitors derepress downstream effector caspases and induce apoptosis of acute myeloid leukemia cells. Blood 2005; 105: 4043–4050.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cillessen SA, Reed JC, Welsh K, Pinilla C, Houghten R, Hooijberg E et al. Small-molecule XIAP antagonist restores caspase-9 mediated apoptosis in XIAP-positive diffuse large B-cell lymphoma cells. Blood 2008; 111: 369–375.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kater AP, Dicker F, Mangiola M, Welsh K, Houghten R, Ostresh J et al. Inhibitors of XIAP sensitize CD40-activated chronic lymphocytic leukemia cells to CD95-mediated apoptosis. Blood 2005; 106: 1742–1748.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Carter BZ, Milella M, Tsao T, McQueen T, Schober WD, Hu W et al. Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia. Leukemia 2003; 17: 2081–2089.

    CAS  PubMed  Google Scholar 

  136. Lima RT, Martins LM, Guimaraes JE, Sambade C, Vasconcelos MH . Chemosensitization effects of XIAP downregulation in K562 leukemia cells. J Chemother 2006; 18: 98–102.

    CAS  PubMed  Google Scholar 

  137. LaCasse EC, Cherton-Horvat GG, Hewitt KE, Jerome LJ, Morris SJ, Kandimalla ER et al. Preclinical characterization of AEG35156/GEM 640, a second-generation antisense oligonucleotide targeting X-linked inhibitor of apoptosis. Clin Cancer Res 2006; 12: 5231–5241.

    CAS  PubMed  Google Scholar 

  138. LaCasse E, Morris S, Ward T, Cumings J, Robson L, Di Tullio K et al. AEG 35156, a XIAP antisense oligonucleotide, suppresses XIAP levels in targeted tissues isolatedd from pre-clinical models and from patients. 97th American Association Cancer Research Annual Meeting. Washington, D.C. 2006.

  139. Jolivet J, Dean E, Ward T, Denneny O, Jacob C, Goodege P et al. A phase I trial of AEG35156 (XIAP antisense) administered as 2-hour intravenous infusions in patients with advanced tumours. J Clin Oncol (Meeting Abstr) 2008; 26: 3541.

    Google Scholar 

  140. Ansell SM, Arendt BK, Grote DM, Jelinek DF, Novak AJ, Wellik LE et al. Inhibition of survivin expression suppresses the growth of aggressive non-Hodgkin's lymphoma. Leukemia 2004; 18: 616–623.

    CAS  PubMed  Google Scholar 

  141. Tolcher AW, Antonia S, Lewis LD, Mita A, Mahany Jr J, Reddy NJ et al. A phase I study of YM155, a novel survivin suppressant, administered by 168 h continuous infusion to patients with advanced solid tumors. J Clin Oncol (Meeting Abstr) 2006; 24: 3014.

    Google Scholar 

Download references

Acknowledgements

Work in my laboratory is supported by grants from the Deutsche Forschungsgemeinschaft, the Deutsche Krebshilfe, the Bundesministerium für Forschung und Technologie, Wilhelm-Sander-Stiftung, Else-Kröner Stiftung, the European Community (Apotrain, Apo-Sys), DAAD/INCA and IAP6/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Fulda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulda, S. Inhibitor of apoptosis proteins in hematological malignancies. Leukemia 23, 467–476 (2009). https://doi.org/10.1038/leu.2008.329

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.329

Keywords

This article is cited by

Search

Quick links