Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

Secretion of angiogenic proteins by human multipotent mesenchymal stromal cells and their clinical potential in the treatment of avascular osteonecrosis

Abstract

Osteonecrosis is a frequent complication after treatment for childhood leukemia and other steroid-based therapies. The success rate of core decompression surgery is limited. Therefore, we evaluated relevant biological characteristics of human multipotent mesenchymal stromal cells (MSCs) in vitro. MSCs cultured under low-oxygen tensions showed decreased proliferation and differentiation into bone. However, these MSCs secreted significant amounts of vascular endothelial-derived factor in the presence of interferon-γ. These in vitro results with potential effects on neovascularization and bone regeneration as well as findings in animal models prompted us to treat five patients with steroid-induced osteonecrosis of the femur by core decompression surgery and instillation of expanded autologous MSCs. Within 3 weeks of culture, sufficient numbers of MSCs were generated using animal protein-free culture conditions. No chromosomal aberrations were detected by matrix-based comparative genomic hybridization. Application of MSCs during core decompression was feasible and safe. Median follow-up is 16 months and the patients in this pilot study reported clinical improvement. Formation of mineralized bone in the osteonecrotic cavity was proven by computed tomography. Taken together, MSCs display biological properties that may add to the efficiency of surgical treatment in osteonecrosis and should be evaluated in larger patient cohorts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Burger B, Beier R, Zimmermann M, Beck JD, Reiter A, Schrappe M . Osteonecrosis: a treatment related toxicity in childhood acute lymphoblastic leukemia (ALL)—experiences from trial ALL-BFM 95. Pediatr Blood Cancer 2005; 44: 220–225.

    Article  PubMed  Google Scholar 

  2. Adekile AD, Gupta R, Yacoub F, Sinan T, Al-Bloushi M, Haider MZ . Avascular necrosis of the hip in children with sickle cell disease and high Hb F: magnetic resonance imaging findings and influence of alpha-thalassemia trait. Acta Haematol 2001; 105: 27–31.

    Article  CAS  PubMed  Google Scholar 

  3. Strauss AJ, Su JT, Dalton VM, Gelber RD, Sallan SE, Silverman LB . Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol 2001; 19: 3066–3072.

    Article  CAS  PubMed  Google Scholar 

  4. Kobayakawa M, Rydholm U, Wingstrand H, Pettersson H, Lidgren L . Femoral head necrosis in juvenile chronic arthritis. Acta Orthop Scand 1989; 60: 164–169.

    Article  CAS  PubMed  Google Scholar 

  5. Steinberg ME, Steinberg DR . Classification systems for osteonecrosis: an overview. Orthop Clin North Am 2004; 35: 273-viii.

    Article  Google Scholar 

  6. Karimova EJ, Rai SN, Deng X, Ingle DJ, Ralph AC, Neel MD et al. MRI of knee osteonecrosis in children with leukemia and lymphoma: part 1, observer agreement. AJR Am J Roentgenol 2006; 186: 470–476.

    Article  PubMed  Google Scholar 

  7. Karimova EJ, Rai SN, Ingle D, Ralph AC, Deng X, Neel MD et al. MRI of knee osteonecrosis in children with leukemia and lymphoma: part 2, clinical and imaging patterns. AJR Am J Roentgenol 2006; 186: 477–482.

    Article  PubMed  Google Scholar 

  8. Ribeiro RC, Fletcher BD, Kennedy W, Harrison PL, Neel MD, Kaste SC et al. Magnetic resonance imaging detection of avascular necrosis of the bone in children receiving intensive prednisone therapy for acute lymphoblastic leukemia or non-Hodgkin lymphoma. Leukemia 2001; 15: 891–897.

    Article  CAS  PubMed  Google Scholar 

  9. Castro Jr FP, Barrack RL . Core decompression and conservative treatment for avascular necrosis of the femoral head: a meta-analysis. Am J Orthop 2000; 29: 187–194.

    PubMed  Google Scholar 

  10. Beltran J, Knight CT, Zuelzer WA, Morgan JP, Shwendeman LJ, Chandnani VP et al. Core decompression for avascular necrosis of the femoral head: correlation between long-term results and preoperative MR staging. Radiology 1990; 175: 533–536.

    Article  CAS  PubMed  Google Scholar 

  11. Low K, Mont MA, Hungerford DS . Steroid-associated osteonecrosis of the knee: a comprehensive review. Instr Course Lect 2001; 50: 489–493.

    CAS  PubMed  Google Scholar 

  12. Simank HG, Brocai DR, Strauch K, Lukoschek M . Core decompression in osteonecrosis of the femoral head: risk-factor-dependent outcome evaluation using survivorship analysis. Int Orthop 1999; 23: 154–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gangji V, Hauzeur JP, Matos C, Maertelaer De V, Toungouz M, Lambermont M . Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am 2004; 86-A: 1153–1160.

    Article  PubMed  Google Scholar 

  14. Hernigou P, Beaujean F . Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 2002; 405: 14–23.

    Article  Google Scholar 

  15. Yan ZQ, Chen YS, Li WJ, Yang Y, Huo JZ, Chen ZR et al. Treatment of osteonecrosis of the femoral head by percutaneous decompression and autologous bone marrow mononuclear cell infusion. Chin J Traumatol 2006; 9: 3–7.

    PubMed  Google Scholar 

  16. Lee HS, Huang GT, Chiang H, Chiou LL, Chen MH, Hsieh CH et al. Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells 2003; 21: 190–199.

    Article  CAS  PubMed  Google Scholar 

  17. Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG . Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials 2005; 26: 971–977.

    Article  CAS  PubMed  Google Scholar 

  18. Kotobuki N, Hirose M, Machida H, Katou Y, Muraki K, Takakura Y et al. Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells. Tissue Eng 2005; 11: 663–673.

    Article  CAS  PubMed  Google Scholar 

  19. Kraus KH, Kirker-Head C . Mesenchymal stem cells and bone regeneration. Vet Surg 2006; 35: 232–242.

    Article  PubMed  Google Scholar 

  20. Hernigou P, Beaujean F, Lambotte JC . Decrease in the mesenchymal stem-cell pool in the proximal femur in corticosteroid-induced osteonecrosis. J Bone Joint Surg Br 1999; 81: 349–355.

    Article  CAS  PubMed  Google Scholar 

  21. Ikeguchi R, Kakinoki R, Aoyama T, Shibata KR, Otsuka S, Fukiage K et al. Regeneration of osteonecrosis of canine scapho-lunate using bone marrow stromal cells: possible therapeutic approach for Kienbock disease. Cell Transplant 2006; 15: 411–422.

    Article  PubMed  Google Scholar 

  22. Takahashi Y, Yamamoto M, Tabata Y . Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate. Biomaterials 2005; 26: 3587–3596.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Z, Goh J, Das DS, Ge Z, Ouyang H, Chong JS et al. Efficacy of bone marrow-derived stem cells in strengthening osteoporotic bone in a rabbit model. Tissue Eng 2006; 12: 1753–1761.

    Article  CAS  PubMed  Google Scholar 

  24. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 2002; 99: 8932–8937.

    Article  CAS  PubMed  Google Scholar 

  25. Le Blanc K, Gotherstrom C, Ringden O, Hassan M, McMahon R, Horwitz E et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 2005; 79: 1607–1614.

    Article  PubMed  Google Scholar 

  26. Phinney DG, Prockop DJ . Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 2007; 25: 2896–2902.

    Article  PubMed  Google Scholar 

  27. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 1997; 20: 399–407.

    Article  CAS  Google Scholar 

  28. Mendrzyk F, Radlwimmer B, Joos S, Kokocinski F, Benner A, Stange DE et al. Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. J Clin Oncol 2005; 23: 8853–8862.

    Article  CAS  Google Scholar 

  29. Pfister S, Remke M, Toedt G, Werft W, Benner A, Mendrzyk F et al. Supratentorial primitive neuroectodermal tumors of the central nervous system frequently harbor deletions of the CDKN2A locus and other genomic aberrations distinct from medulloblastomas. Genes Chromosomes Cancer 2007; 46: 839–851.

    Article  CAS  Google Scholar 

  30. Maegawa N, Kawamura K, Hirose M, Yajima H, Takakura Y, Ohgushi H . Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J Tissue Eng Regen Med 2007; 1: 306–313.

    Article  CAS  PubMed  Google Scholar 

  31. Okuyama H, Krishnamachary B, Zhou YF, Nagasawa H, Bosch-Marce M, Semenza GL . Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J Biol Chem 2006; 281: 15554–15563.

    Article  CAS  PubMed  Google Scholar 

  32. Müller I, Kordowich S, Holzwarth C, Spano C, Isensee G, Staiber A et al. Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 2006; 8: 437–444.

    Article  PubMed  Google Scholar 

  33. Fibbe WE, Nauta AJ, Roelofs H . Modulation of immune responses by mesenchymal stem cells. Ann NY Acad Sci 2007; 1106: 272–278.

    Article  CAS  PubMed  Google Scholar 

  34. Le Blanc K, Ringden O . Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Curr Opin Immunol 2006; 18: 586–591.

    Article  CAS  PubMed  Google Scholar 

  35. Müller I, Kordowich S, Holzwarth C, Isensee G, Lang P, Neunhoeffer F et al. Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells Mol Dis 2008; 40: 25–32.

    Article  PubMed  Google Scholar 

  36. Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005; 11: 389–398.

    Article  PubMed  Google Scholar 

  37. Dickhut A, Schwerdtfeger R, Kuklick L, Ritter M, Thiede C, Neubauer A et al. Mesenchymal stem cells obtained after bone marrow transplantation or peripheral blood stem cell transplantation originate from host tissue. Ann Hematol 2005; 84: 722–727.

    Article  PubMed  Google Scholar 

  38. Koc ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R et al. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 1999; 27: 1675–1681.

    Article  CAS  PubMed  Google Scholar 

  39. Poloni A, Leoni P, Buscemi L, Balducci F, Pasquini R, Masia MC et al. Engraftment capacity of mesenchymal cells following hematopoietic stem cell transplantation in patients receiving reduced-intensity conditioning regimen. Leukemia 2006; 20: 329–335.

    Article  CAS  PubMed  Google Scholar 

  40. Pozzi S, Lisini D, Podesta M, Bernardo ME, Sessarego N, Piaggio G et al. Donor multipotent mesenchymal stromal cells may engraft in pediatric patients given either cord blood or bone marrow transplantation. Exp Hematol 2006; 34: 934–942.

    Article  CAS  PubMed  Google Scholar 

  41. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6: 1282–1286.

    Article  CAS  PubMed  Google Scholar 

  42. Meyerrose TE, De Ugarte DA, Hofling AA, Herrbrich PE, Cordonnier TD, Shultz LD et al. In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells 2007; 25: 220–227.

    Article  CAS  PubMed  Google Scholar 

  43. Caplan AI, Dennis JE . Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006; 98: 1076–1084.

    Article  CAS  PubMed  Google Scholar 

  44. Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 2006; 14: 840–850.

    Article  CAS  PubMed  Google Scholar 

  45. Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ . Angiogenic effects of human multipotent stromal cell onditioned medium activate the PI3K–Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 2007; 25: 2363–2370.

    Article  CAS  PubMed  Google Scholar 

  46. Conover C . Insulin-like growth factor binding proteins and bone metabolism. Am J Physiol Endocrinol Metab 2007; 294: 10–14.

    Article  Google Scholar 

  47. Kaku K, Osada H, Seki K, Sekiya S . Insulin-like growth factor 2 (IGF2) and IGF2 receptor gene variants are associated with fetal growth. Acta Paediatr 2007; 96: 363–367.

    Article  CAS  PubMed  Google Scholar 

  48. Boudignon BM, Bikle DD, Kurimoto P, Elalieh H, Nishida S, Wang Y et al. Insulin-like growth factor I stimulates recovery of bone lost after a period of skeletal unloading. J Appl Physiol 2007; 103: 125–131.

    Article  CAS  PubMed  Google Scholar 

  49. Serakinci N, Guldberg P, Burns JS, Abdallah B, Schrodder H, Jensen T et al. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene 2004; 23: 5095–5098.

    Article  CAS  Google Scholar 

  50. Wang Y, Huso DL, Harrington J, Kellner J, Jeong DK, Turney J et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 2005; 7: 509–519.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, I., Vaegler, M., Holzwarth, C. et al. Secretion of angiogenic proteins by human multipotent mesenchymal stromal cells and their clinical potential in the treatment of avascular osteonecrosis. Leukemia 22, 2054–2061 (2008). https://doi.org/10.1038/leu.2008.217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.217

Keywords

This article is cited by

Search

Quick links