Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

The expression of 16 genes related to the cell of origin and immune response predicts survival in elderly patients with diffuse large B-cell lymphoma treated with CHOP and rituximab

Abstract

Gene expression profiles have been associated with clinical outcome in patients with diffuse large B-cell lymphoma (DLBCL) treated with anthracycline-containing chemotherapy. Using Affymetrix HU133A microarrays, we analyzed the lymphoma transcriptional profile of 30 patients treated with CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) and 23 patients treated with rituximab (R)-CHOP in the Groupe d'Etude des Lymphomes de l'Adulte clinical centers. We used this data set to select transcripts showing an association with progression-free survival in all patients or showing a differential effect in the two treatment groups. We performed real-time quantitative reverse transcription-PCR in the 23 R-CHOP samples of the screening set and an additional 44 R-CHOP samples set to evaluate the prognostic significance of these transcripts. In these 67 patients, the level of expression of 16 genes and the cell-of-origin classification were significantly associated with overall survival, independently of the International Prognostic Index. A multivariate model comprising four genes of the cell-of-origin signature (LMO2, MME, LPP and FOXP1) and two genes related to immune response, identified for their differential effects in R-CHOP patients (APOBEC3G and RAB33A), demonstrated a high predictive efficiency in this set of patients, suggesting that both features affect outcome in DLBCL patients receiving immunochemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol 1999; 17: 3835–3849.

    Article  CAS  PubMed  Google Scholar 

  2. Shipp MA, Harrington DP, Anderson JR, Armitage JO, Bonadonna G, Brittinger G et al. A predictive model for aggressive non-Hodgkin's lymphoma. The International Non-Hodgkin's Lymphoma Prognostic Factors Project. N Engl J Med 1993; 329: 987–994.

    Article  Google Scholar 

  3. Lossos IS . Molecular pathogenesis of diffuse large B-cell lymphoma. J Clin Oncol 2005; 23: 6351–6357.

    Article  CAS  PubMed  Google Scholar 

  4. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 1937–1947.

    Article  PubMed  Google Scholar 

  6. Monti S, Savage KJ, Kutok JL, Feuerhake F, Kurtin P, Mihm M et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 2005; 105: 1851–1861.

    Article  CAS  PubMed  Google Scholar 

  7. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 68–74.

    Article  CAS  PubMed  Google Scholar 

  8. Lossos IS, Czerwinski DK, Alizadeh AA, Wechser MA, Tibshirani R, Botstein D et al. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med 2004; 350: 1828–1837.

    Article  CAS  PubMed  Google Scholar 

  9. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 235–242.

    Article  CAS  PubMed  Google Scholar 

  10. Feugier P, Van Hoof A, Sebban C, Solal-Celigny P, Bouabdallah R, Ferme C et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol 2005; 23: 4117–4126.

    Article  CAS  PubMed  Google Scholar 

  11. Coiffier B . State-of-the-art therapeutics: diffuse large B-cell lymphoma. J Clin Oncol 2005; 23: 6387–6393.

    Article  CAS  PubMed  Google Scholar 

  12. Smith MR . Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 2003; 22: 7359–7368.

    Article  CAS  PubMed  Google Scholar 

  13. Cartron G, Watier H, Golay J, Solal-Celigny P . From the bench to the bedside: ways to improve rituximab efficacy. Blood 2004; 104: 2635–2642.

    Article  CAS  PubMed  Google Scholar 

  14. Friedberg JW . Unique toxicities and resistance mechanisms associated with monoclonal antibody therapy. In: Gerwitz AM, Winter JN, Zuckerman K (eds). Hematology (Am Soc Hematol Educ Program). American Society of Hematology Inc.: Washington DC, 2005, pp 329–334.

    Google Scholar 

  15. Mounier N, Briere J, Gisselbrecht C, Emile JF, Lederlin P, Sebban C et al. Rituximab plus CHOP (R-CHOP) overcomes bcl-2—associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL). Blood 2003; 101: 4279–4284.

    Article  CAS  PubMed  Google Scholar 

  16. Winter JN, Weller EA, Horning SJ, Krajewska M, Variakojis D, Habermann TM et al. Prognostic significance of Bcl-6 protein expression in DLBCL treated with CHOP or R-CHOP: a prospective correlative study. Blood 2006; 107: 4207–4213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics (Oxford, England) 2003; 4: 249–264.

    Article  Google Scholar 

  18. Gentleman R, Ihaka R, the R Development Core Team. R: A Language and Environment for Statistical Computing—Reference Manual. R Foundation for Statistical Computing: Vienna, Austria, 2007, 1–1507.

    Google Scholar 

  19. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kalbfleisch JD, Prentice RL . Relative risk (Cox) regression models. In: Kalbfleisch JD, Prentice RL (eds). The Statistical Analysis of Failure Time Data, 2nd edn. John Wiley & Sons Inc.: Hoboken, NJ, 2002, pp 95–147.

    Chapter  Google Scholar 

  21. Tibshirani R . Regression shrinkage and selection via the lasso. J R Statist Soc B 1996; 58: 267–288.

    Google Scholar 

  22. Park MY, Hastie T . L1-regularization path algorithm for generalized linear models. J R Statist Soc B 2007; 69: 659–677.

    Article  Google Scholar 

  23. Harrell Jr FE, Lee KL, Mark DB . Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996; 15: 361–387.

    Article  PubMed  Google Scholar 

  24. Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM . A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci USA 2003; 100: 9991–9996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barrans SL, Fenton JA, Banham A, Owen RG, Jack AS . Strong expression of FOXP1 identifies a distinct subset of diffuse large B-cell lymphoma (DLBCL) patients with poor outcome. Blood 2004; 104: 2933–2935.

    Article  CAS  PubMed  Google Scholar 

  26. Segal MR . Microarray gene expression data with linked survival phenotypes: diffuse large-B-cell lymphoma revisited. Biostatistics (Oxford, England) 2006; 7: 268–285.

    Article  Google Scholar 

  27. Skol AD, Scott LJ, Abecasis GR, Boehnke M . Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 2006; 38: 209–213.

    Article  CAS  PubMed  Google Scholar 

  28. Zehetmayer S, Bauer P, Posch M . Two-stage designs for experiments with a large number of hypotheses. Bioinformatics 2005; 21: 3771–3777.

    Article  CAS  PubMed  Google Scholar 

  29. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004; 103: 275–282.

    Article  CAS  PubMed  Google Scholar 

  30. Nyman H, Adde M, Karjalainen-Lindsberg ML, Taskinen M, Berglund M, Amini RM et al. Prognostic impact of immunohistochemically defined germinal center phenotype in diffuse large B-cell lymphoma patients treated with immunochemotherapy. Blood 2007; 109: 4930–4935.

    Article  CAS  PubMed  Google Scholar 

  31. de Jong D, Rosenwald A, Chhanabhai M, Gaulard P, Klapper W, Lee A et al. Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications—a study from the Lunenburg Lymphoma Biomarker Consortium. J Clin Oncol 2007; 25: 805–812.

    Article  PubMed  Google Scholar 

  32. Natkunam Y, Farinha P, Hsi ED, Hans CP, Tibshirani R, Sehn LH et al. LMO2 protein expression predicts survival in patients with diffuse large B-cell lymphoma treated with anthracycline-based chemotherapy with and without rituximab. J Clin Oncol 2008; 26: 447–454.

    Article  CAS  PubMed  Google Scholar 

  33. Banham AH, Connors JM, Brown PJ, Cordell JL, Ott G, Sreenivasan G et al. Expression of the FOXP1 transcription factor is strongly associated with inferior survival in patients with diffuse large B-cell lymphoma. Clin Cancer Res 2005; 11: 1065–1072.

    CAS  PubMed  Google Scholar 

  34. Chang CC, McClintock S, Cleveland RP, Trzpuc T, Vesole DH, Logan B et al. Immunohistochemical expression patterns of germinal center and activation B-cell markers correlate with prognosis in diffuse large B-cell lymphoma. Am J Surg Pathol 2004; 28: 464–470.

    Article  PubMed  Google Scholar 

  35. Fabiani B, Delmer A, Lepage E, Guettier C, Petrella T, Briere J et al. CD10 expression in diffuse large B-cell lymphomas does not influence survival. Virchows Arch 2004; 445: 545–551.

    Article  CAS  PubMed  Google Scholar 

  36. van Imhoff GW, Boerma EJ, van der Holt B, Schuuring E, Verdonck LF, Kluin-Nelemans HC et al. Prognostic impact of germinal center-associated proteins and chromosomal breakpoints in poor-risk diffuse large B-cell lymphoma. J Clin Oncol 2006; 24: 4135–4142.

    Article  CAS  PubMed  Google Scholar 

  37. Petit MM, Mols R, Schoenmakers EF, Mandahl N, Van de Ven WJ . LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics 1996; 36: 118–129.

    Article  CAS  PubMed  Google Scholar 

  38. Daheron L, Veinstein A, Brizard F, Drabkin H, Lacotte L, Guilhot F et al. Human LPP gene is fused to MLL in a secondary acute leukemia with a t(3;11) (q28;q23). Genes Chromosomes Cancer 2001; 31: 382–389.

    Article  CAS  PubMed  Google Scholar 

  39. Schwindt H, Akasaka T, Zuhlke-Jenisch R, Hans V, Schaller C, Klapper W et al. Chromosomal translocations fusing the BCL6 gene to different partner loci are recurrent in primary central nervous system lymphoma and may be associated with aberrant somatic hypermutation or defective class switch recombination. J Neuropathol Exp Neurol 2006; 65: 776–782.

    Article  CAS  PubMed  Google Scholar 

  40. Guo B, Sallis RE, Greenall A, Petit MM, Jansen E, Young L et al. The LIM domain protein LPP is a coactivator for the ETS domain transcription factor PEA3. Mol Cell Biol 2006; 26: 4529–4538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takaori-Kondo A . APOBEC family proteins: novel antiviral innate immunity. Int J Hematol 2006; 83: 213–216.

    Article  CAS  PubMed  Google Scholar 

  42. Gallois-Montbrun S, Kramer B, Swanson CM, Byers H, Lynham S, Ward M et al. Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol 2007; 81: 2165–2178.

    Article  CAS  PubMed  Google Scholar 

  43. Stopak KS, Chiu YL, Kropp J, Grant RM, Greene WC . Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J Biol Chem 2007; 282: 3539–3546.

    Article  CAS  PubMed  Google Scholar 

  44. Cheng E, Trombetta SE, Kovacs D, Beech RD, Ariyan S, Reyes-Mugica M et al. Rab33A: characterization, expression, and suppression by epigenetic modification. J Invest Dermatol 2006; 126: 2257–2271.

    Article  CAS  PubMed  Google Scholar 

  45. Jacobsen M, Repsilber D, Gutschmidt A, Neher A, Feldmann K, Mollenkopf HJ et al. Ras-associated small GTPase 33A, a novel T cell factor, is down-regulated in patients with tuberculosis. J Infect Dis 2005; 192: 1211–1218.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Fabien Petel (Ligue Nationale Contre le Cancer) for the management of the Affymetrix and annotation databases and submission of the same to the Array Express. We thank E Jacquet, H Lévaique, E Garrido (CNRS, Gif sur Yvette, France) and E Côme for the realization of the TLDA experiments; A Allain and N Nio for their help in clinical data management. We are indebted to the pathologists and clinicians of the GELA who contributed pathological specimen and clinical data. This study was supported by grants of the Ligue Nationale Contre le Cancer (programme Carte d'Identité des Tumeurs), the Programme Hospitalier de Recherche Clinique (AOM 03060) and an unrestricted grant from Roche.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to K Leroy.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jais, JP., Haioun, C., Molina, T. et al. The expression of 16 genes related to the cell of origin and immune response predicts survival in elderly patients with diffuse large B-cell lymphoma treated with CHOP and rituximab. Leukemia 22, 1917–1924 (2008). https://doi.org/10.1038/leu.2008.188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.188

Keywords

This article is cited by

Search

Quick links