Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia

Abstract

In 1982, chronic myelomonocytic leukemia (CMML) was first classified in the category of myelodysplastic syndromes (MDSs), but it always seemed somewhat out of place compared with the rest of the MDS categories. In the 1990s, many argued that there were two different forms of CMML, a proliferative type and a myelodysplastic type. Then in 2001 the World Health Organization created a new category called the mixed myelodysplastic/myeloproliferative diseases, under which CMML was included. Although we still do not understand much about CMML pathogenesis nor do we have specific therapies for this disease, at least now most agree that it is in an appropriate category such that other areas of investigation can now proceed. On the other hand, we now understand a great deal of the pathogenesis underlying the disease now called juvenile myelomonocytic leukemia (JMML). JMML also fits in the new category of mixed myelodysplastic/myeloproliferative diseases. JMML is an excellent model malignancy for investigating and understanding dysregulated and aberrant signal transduction in the Ras pathway. It has also served as a teaching tool for exploring inherited predispositions to cancer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1

References

  1. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982; 51: 189–199.

    Article  CAS  PubMed  Google Scholar 

  2. Wasserman LR . Polycythemia Vera Study Group: a historical perspective. Semin Hematol 1986; 23: 183–187.

    CAS  PubMed  Google Scholar 

  3. Tefferi A . The history of myeloproliferative disorders: before and after Dameshek. Leukemia 2008; 22: 3–13.

    CAS  PubMed  Google Scholar 

  4. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. The chronic myeloid leukemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukemia. Proposals by the French–American–British Cooperative Leukaemia Group. Br J Haematol 1994; 87: 746–754.

    CAS  PubMed  Google Scholar 

  5. Germing U, Gattermann N, Minning H, Heyll A, Aul C . Problems in the classification of CMML—dysplastic versus proliferative type. Leuk Res 1998; 22: 871–878.

    CAS  PubMed  Google Scholar 

  6. Vardiman JW, Pierre R, Bain B, Bennett JM, Imbert M, Brunning RD et al. WHO histological classification of myelodysplastic/myeloproliferative diseases. In Jaffe ES, Harris NL, Stein H, Vardiman JW (eds). World Health Organization Classification of Tumours: Tumours of the Haematopoietic and Lymphoid Tissues. International Agency for Research on Cancer (IARC) Press: Lyon, France, 2001, pp 47–59.

    Google Scholar 

  7. Germing U, Strupp C, Knipp S, Kuendgen A, Giagounidis A, Hildebrandt B et al. Chronic myelomonocytic leukemia in the light of the WHO proposals. Haematologica 2007; 92: 974–977.

    PubMed  Google Scholar 

  8. Tefferi A, Thiele J, Orazi A, Kvasnicka HM, Barbui T, Hanson CA et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood 2007; 110: 1092–1097.

    CAS  PubMed  Google Scholar 

  9. Tefferi A, Vardiman JW . Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22: 14–22.

    CAS  PubMed  Google Scholar 

  10. Altman AJ, Palmer CG, Baehner RL . Juvenile ‘chronic granulocytic’ leukemia; a panmyelopathy with prominent monocytic involvement and circulating monocyte colony-forming cells. Blood 1974; 43: 341–350.

    CAS  PubMed  Google Scholar 

  11. Castro-Malaspina H, Schaison G, Passe S, Pasquier A, Berger R, Bayle-Weisgerber C et al. Subacute and chronic myelomonocytic leukemia in children (juvenile CML). Clinical and hematologic observations, and identification of prognostic factors. Cancer 1984; 54: 675–686.

    CAS  PubMed  Google Scholar 

  12. Estrov Z, Grunberger T, Chan HSL, Freedman MH . Juvenile chronic myelogenous leukemia: characterization of the disease using cell cultures. Blood 1986; 67: 1382–1387.

    CAS  PubMed  Google Scholar 

  13. Hogge DE, Shannon KM, Kalousek DK, Schonberg S, Schaffner V, Zoger S et al. Juvenile monosomy 7 syndrome: evidence that the disease originates in a pluripotent hemopoietic stem cell. Leuk Res 1987; 11: 705–709.

    CAS  PubMed  Google Scholar 

  14. Bagby GC, Dinarello CA, Neerhout RC, Ridgway D, McCall E . Interleukin 1-dependent paracrine granulopoiesis in chronic granulocytic leukemia of the juvenile type. J Clin Invest 1988; 82: 143–146.

    Google Scholar 

  15. Luna-Fineman S, Shannon KM, Lange BJ . Childhood monosomy 7: epidemiology, biology, and mechanistic implications. Blood 1995; 85: 1985–1999.

    CAS  PubMed  Google Scholar 

  16. Niemeyer CM, Arico M, Basso G, Biondi A, Cantu-Rajnoldi A, Creutzig U et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. Blood 1997; 89: 3534–3543.

    CAS  PubMed  Google Scholar 

  17. Niemeyer CM, Fenu S, Hasle H, Mann G, Stary J, van Wering E . Differentiating juvenile myelomonocytic leukemia from infectious disease. Blood 1989; 91: 365–367.

    Google Scholar 

  18. Golub TR, Barker GF, Lovett M, Gilliland DG . Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77: 307–316.

    CAS  PubMed  Google Scholar 

  19. Steensma DP, Dewald GW, Lasho TL, Powell HL, McClure RF, Levine RL et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both ‘atypical’ myeloproliferative disorders and myelodysplastic syndromes. Blood 2005; 106: 1207–1209.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jelinek J, Oki Y, Gharibyan V, Bueso-Ramos C, Prchal JT, Verstovsek S et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood 2005; 106: 3370–3373.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee BH, Tothova Z, Levine RL, Anderson K, Buza-Vidas N, Cullen DE et al. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell 2007; 12: 367–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Germing U, Kundgen A, Gattermann N . Risk assessment in chronic myelomonocytic leukemia (CMML). Leuk Lymphoma 2004; 45: 1311–1318.

    CAS  PubMed  Google Scholar 

  23. Onida F, Kantarjian HM, Smith TL, Ball G, Keating MJ, Estey EH et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood 2002; 99: 840–849.

    CAS  PubMed  Google Scholar 

  24. Beran M, Wen S, Shen Y, Onida F, Jelinek J, Cortes J et al. Prognostic factors and risk assessment in chronic myelomonocytic leukemia: validation of the M.D. anderson prognostic scoring system. Leuk Lymphoma 2007; 48: 1150–1160.

    PubMed  Google Scholar 

  25. Oki Y, Jelinek J, Shen L, Kantarjian HM, Issa JP . Induction of hypomethylation and molecular response after decitabine therapy in patients with chronic myelomonocytic leukemia. Blood 2008; 111: 2382–2384.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Najfeld V, Vlachos A, Parker R, Burnett W, Scalise A, Fruchtman S . Evidence for the embryonic origin of partial chromosome 7 deletion in monozygotic twins with juvenile chronic myelogenous leukemia. Leukemia 1997; 11: 306–312.

    CAS  PubMed  Google Scholar 

  27. Niemeyer CM, Locatelli F . Chronic myeloproliferative disorders. In: C-H Pui (ed). Childhood Leukemias. Cambridge University Press: New York, 2006, pp 571–598.

    Google Scholar 

  28. Emanuel PD . Myelodysplasia and myeloproliferative disorders in childhood—an update. Br J Haematol 1999; 105: 852–863.

    CAS  PubMed  Google Scholar 

  29. Freedman MH, Cohen A, Grunberger T, Bunin N, Luddy RE, Saunders EF et al. Central role of tumor necrosis factor, GM-CSF, and interleukin 1 in the pathogenesis of juvenile chronic myelogenous leukemia. Br J Haematol 1992; 80: 40–48.

    CAS  PubMed  Google Scholar 

  30. Weatherall DJ, Edwards JA, Donohoe WT . Haemoglobin and red cell enzyme changes in juvenile myeloid leukaemia. Br Med J 1968; 1: 679–681.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Emanuel PD, Bates LJ, Zhu SW, Castleberry RP, Gualtieri RJ, Zuckerman KS . The role of monocyte-derived hemopoietic growth factors in the regulation of myeloproliferation in juvenile chronic myelogenous leukemia. Exp Hematol 1991; 19: 1017–1024.

    CAS  PubMed  Google Scholar 

  32. Siitonen T, Zheng A, Savolainen E-R, Koistinen P . Spontaneous granulocyte-macrophage colony growth by peripheral blood mononuclear cells in myeloproliferative disorders. Leuk Res 1996; 20: 187–195.

    CAS  PubMed  Google Scholar 

  33. Emanuel PD, Bates LJ, Castleberry RP, Gualtieri RJ, Zuckerman KS . Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 1991; 77: 925–929.

    CAS  PubMed  Google Scholar 

  34. Prchal JF, Axelrad AA . Bone marrow responses in polycythemia vera. N Engl J Med 1974; 290: 1382.

    CAS  PubMed  Google Scholar 

  35. Dai CH, Kranyz SB, Means RT, Horn ST, Gilbert HS . Polycythemia vera blood burst-forming units-erythroid are hypersensitive to interleukin-3. J Clin Invest 1991; 87: 391–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Correa PN, Eskinazi D, Axelrad AA . Circulating erythroid progenitors in polycythemai vera are hypersensitive to insulin-like growth factor-1 in vitro: studies in an improved serum-free medium. Blood 1994; 83: 99–112.

    CAS  PubMed  Google Scholar 

  37. Axelrad AA, Eskinazi D, Correa PN, Amato D . Hypersensitivity of circulating progenitor cells to megakaryocyte growth and development factor (PEG-rHuMGDF) in essential thrombocythemia. Blood 2000; 96: 3310–3321.

    CAS  PubMed  Google Scholar 

  38. Busque L, Gilliland G, Prchal JT, Sieff CA, Weinstein HJ, Sokol JM et al. Clonality in juvenile chronic myelogenous leukemia. Blood 1995; 85: 21–30.

    CAS  PubMed  Google Scholar 

  39. Cooper LJN, Shannon KM, Loken MR, Weaver M, Stephens K, Sievers EL . Evidence that juvenile myelomonocytic leukemia can arise from a pluripotent stem cell. Blood 2000; 96: 2310–2313.

    CAS  PubMed  Google Scholar 

  40. Kalra R, Paderanga D, Olson K, Shannon KM . Genetic analysis is consistent with the hypothesis that NF1 limits myeloid cell growth through p21ras. Blood 1994; 84: 3435–3439.

    CAS  PubMed  Google Scholar 

  41. Shannon KM, O’Connell P, Martin GA, Paderanga D, Olson K, Dinndorf P et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med 1994; 330: 597–601.

    CAS  PubMed  Google Scholar 

  42. Miles DK, Freedman MH, Stephens K, Pallavicini M, Sievers EL, Weaver M et al. Patterns of hematopoietic lineage involvement in children with neurofibromatosis type 1 and malignant myeloid disorders. Blood 1996; 88: 4314–4320.

    CAS  PubMed  Google Scholar 

  43. Side L, Taylor B, Cayouette M, Conner E, Thompson P, Luce M et al. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N Engl J Med 1997; 336: 1713–1720.

    CAS  PubMed  Google Scholar 

  44. Side LE, Emanuel PD, Taylor B, Franklin J, Thompson P, Castleberry RP et al. Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood 1998; 92: 267–272.

    CAS  PubMed  Google Scholar 

  45. Bos JL . ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–4689.

    CAS  PubMed  Google Scholar 

  46. Schubbert S, Shannon K, Bollag G . Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007; 7: 295–308.

    CAS  PubMed  Google Scholar 

  47. Neubauer A, Shannon KM, Liu E . Mutations of the ras proto-oncogenes in childhood monosomy 7. Blood 1991; 77: 594–598.

    CAS  PubMed  Google Scholar 

  48. Lubbert M, Mirro J, Kitchingman G, McCormick F, Mertelesmann R, Herrmann F et al. Prevalence of N-ras mutations in children with myelodysplastic syndromes and acute myeloid leukemia. Oncogene 1992; 7: 263–268.

    CAS  PubMed  Google Scholar 

  49. Miyauchi J, Asada M, Sasaki M, Tsunematsu Y, Kojima S, Mizutani S . Mutations of the N-ras gene in juvenile chronic myelogenous leucemia. Blood 1994; 83: 2248–2254.

    CAS  PubMed  Google Scholar 

  50. Flotho C, Valcamonica S, Mach-Pascual S, Schmahl G, Corral L, Ritterbach J et al. RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia 1999; 13: 32–37.

    CAS  PubMed  Google Scholar 

  51. Lauchle JO, Braun BS, Loh ML, Shannon K . Inherited predispositions and hyperactive Ras in myeloid leukemogenesis. Pediatr Blood Cancer 2006; 46: 579–585.

    PubMed  Google Scholar 

  52. Bader-Meunier B, Tchernia G, Mielot F, Fontaine JL, Thomas C, Lyonnet S et al. Occurrence of myeloproliferative disorder in patients with Noonan syndrome. J Pediatr 1997; 130: 885–889.

    CAS  PubMed  Google Scholar 

  53. Side LE, Shannon KM . Myeloid disorders in infants with Noonan syndrome and a resident's ‘rule’ recalled. J Pediatr 1997; 130: 857–859.

    CAS  PubMed  Google Scholar 

  54. Choong K, Freedman MH, Chitayat D . Juvenile myelomonocytic leukemia and Noonan syndrome. J Pediatr Hematol Oncol 1999; 21: 523–527.

    CAS  PubMed  Google Scholar 

  55. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001; 29: 465–468.

    CAS  PubMed  Google Scholar 

  56. Tartaglia M, Kalidas K, Shaw A . PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet 2002; 70: 1555–1563.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leucemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003; 34: 148–150.

    CAS  PubMed  Google Scholar 

  58. Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 2004; 103: 2325–2331.

    CAS  PubMed  Google Scholar 

  59. Schubbert S, Lieuw K, Rowe SL, Lee CM, Li X, Loh ML et al. Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood 2005; 106: 311–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kratz CP, Niemeyer CM, Castleberry RP, Cetin M, Bergstrasser E, Emanuel PD et al. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood 2005; 106: 2183–2185.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tartaglia M, Martinelli S, Stella L, Bocchinfuso G, Flex E, Cordeddu V et al. Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet 2006; 78: 279–290.

    CAS  PubMed  Google Scholar 

  62. Largaespada DA, Brannan CI, Jenkins NA, Copeland NG . Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukemia. Nat Genet 1996; 12: 137–143.

    CAS  PubMed  Google Scholar 

  63. Bollag G, Clapp DW, Shih S, Adler F, Zhang YY, Thompson P et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 1996; 12: 144–148.

    CAS  PubMed  Google Scholar 

  64. Birnbaum RA, O’Marcaigh A, Wardak Z, Zhang Y-Y, Dranoff G, Jacks T et al. Nf1 and Gmcsf interact in myeloid leukemogenesis. Mol Cell 2000; 5: 189–195.

    CAS  PubMed  Google Scholar 

  65. Braun BS, Tuveson DA, Kong N, Le DT, Kogan SC, Rozmus SC et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA 2004; 101: 597–602.

    CAS  PubMed  Google Scholar 

  66. Chan IT, Kutok JL, Williams IR, Cohen S, Kelly L, Shigematsu H et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 2004; 113: 528–538.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S et al. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 2005; 7: 179–191.

    CAS  PubMed  Google Scholar 

  68. Kratz CP, Schubbert S, Bollag G, Niemeyer CM, Shannon KM, Zenker M . Germline mutations in components of the Ras signaling pathway in Noonan syndrome and related disorders. Cell Cycle 2006; 5: 1607–1611.

    CAS  PubMed  Google Scholar 

  69. Flotho C, Kratz C, Niemeyer CM . Targeting RAS signaling pathways in juvenile myelomonocytic leukemia. Curr Drug Targets 2007; 8: 715–725.

    CAS  PubMed  Google Scholar 

  70. Emanuel PD . RAS pathway mutations in juvenile myelomonocytic leukemia. Acta Haematol 2008, (in press).

  71. Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet 2006; 38: 331–336.

    CAS  PubMed  Google Scholar 

  72. Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet 2007; 39: 70–74.

    CAS  PubMed  Google Scholar 

  73. Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodale V, Sarkozy A et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 2007; 39: 75–79.

    CAS  PubMed  Google Scholar 

  74. Shannon K, Bollag G . Sending out an SOS. Nat Genet 2007; 39: 8–9.

    CAS  PubMed  Google Scholar 

  75. Kratz CP, Niemeyer CM, Thomas C, Bauhuber S, Matejas V, Bergstrasser E et al. Mutation analysis of Son of Sevenless in juvenile myelomonocytic leukemia. Leukemia 2007; 21: 1108–1109.

    CAS  PubMed  Google Scholar 

  76. de Vries ACH, Stam RW, Kratz CP, Zenker M, Niemeyer CM, van den Heuvel-Eibrink MM et al. Mutation analysis of the BRAF oncogene in juvenile myelomonocytic leukemia. Haematologica 2007; 92: 1574–1575.

    PubMed  Google Scholar 

  77. de Vries ACH, Stam RW, Schneider P, Niemeyer CM, Van Wering ER, Haas OA et al. Role of mutation independent constitutive activation of FLT3 in juvenile myelomonocytic leukemia. Haematologica 2007; 92: 1557–1560.

    PubMed  Google Scholar 

  78. Zecca M, Bergamaschi G, Kratz C, Bergstrasser E, Danesino C, De Filippi P et al. JAK2 V617F mutation is a rare event in juvenile myelomonocytic leukemia. Leukemia 2007; 21: 367–369.

    CAS  PubMed  Google Scholar 

  79. Herrod HG, Dow LW, Sullivan JL . Persistent Epstein–Barr virus infection mimicking juvenile chronic myelogenous leukemia: immunologic and hematologic studies. Blood 1983; 61: 1098–1104.

    CAS  PubMed  Google Scholar 

  80. Kirby MA, Weitzman S, Freedman MH . Juvenile chronic myelogenous leukemia: differentiation from infantile cytomegalovirus infection. J Pediatr Hematol Oncol 1990; 12: 292–296.

    CAS  Google Scholar 

  81. Lorenzana A, Lyons H, Sawaf H, Higgins M, Carrigan D, Emanuel PD . Human herpes virus 6 infection mimicking juvenile myelomonocytic leukemia in an infant. J Pediatr Hematol Oncol 2002; 24: 136–141.

    PubMed  Google Scholar 

  82. Manabe A, Yoshimasu T, Ebihara Y, Yagasaki H, Wada M, Ishikawa K et al. Viral infections in juvenile myelomonocytic leucemia: prevalence and clinical implications. J Pediatr Hematol Oncol 2004; 26: 636–641.

    PubMed  Google Scholar 

  83. Noonan JA . Hypertelorism with turner phenotype. A new syndrome with associated congenital heart disease. Am J Dis Child 1968; 116: 373–380.

    CAS  PubMed  Google Scholar 

  84. Passmore SJ, Chessells JM, Kempski H, Hann IM, Brownbill PA, Stiller CA . Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: a population-based study of incidence and survival. Br J Haematol 2003; 121: 758–767.

    PubMed  Google Scholar 

  85. Matsuda K, Shimada A, Yoshida N, Ogawa A, Watanabe A, Yajima S et al. Spontaneous improvement of hematologic abnormalities in patients having juvenile myelomonocytic leucemia with specific RAS mutations. Blood 2007; 109: 5477–5480.

    CAS  PubMed  Google Scholar 

  86. Locatelli F, Nollke P, Zecca M, Korthof E, Lanino E, Peters C et al. Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood 2005; 105: 410–419.

    CAS  PubMed  Google Scholar 

  87. Yusuf U, Frangoul HA, Gooley TA, Woolfrey AE, Carpenter PA, Andrews RG et al. Allogeneic bone marrow transplantation in children with myelodysplastic syndrome or juvenile myelomonocytic leukemia: the Seattle experience. Bone Marrow Transpl 2004; 33: 805–814.

    CAS  Google Scholar 

  88. Smith FO, King R, Nelson G, Wagner JE, Robertson KA, Sanders JE et al. Unrelated donor bone marrow transplantation for children with juvenile myelomonocytic leukaemia. Br J Haematol 2002; 116: 716–724.

    PubMed  Google Scholar 

  89. Yoshimi A, Bader P, Matthes-Martin S, Stary J, Sedlacek P, Duffner U et al. Donor leukocyte infusion after hematopoietic stem cell transplantation in patients with juvenile myelomonocytic leukemia. Leukemia 2005; 19: 971–977.

    CAS  PubMed  Google Scholar 

  90. Woods WG, Barnard DR, Alonzo TA, Buckley JD, Kobrinsky N, Arthur DC et al. Prospective study of 90 children requiring treatment for juvenile myelomonocytic leukemia or myelodysplastic syndrome: a report from the Children's Cancer Group. J Clin Oncol 2002; 20: 434–440.

    PubMed  Google Scholar 

  91. Berstraesser E, Hasle H, Rogge T, Fischer A, Zimmerman M, Noellke P et al. Non-hematopoietic stem cell transplantation treatment of juvenile myelomonocytic leukemia: a retrospective analysis and definition of response criteria. Pediatr Blood Cancer 2007; 49: 629–633.

    Google Scholar 

  92. Castleberry RP, Emanuel PD, Zuckerman KS, Cohn S, Strauss L, Byrd RL et al. A pilot study of isotretinoin in the treatment of juvenile chronic myelogenous leukemia. N Engl J Med 1994; 331: 1680–1684.

    CAS  PubMed  Google Scholar 

  93. Bernard F, Thomas C, Emile JF, Hercus T, Cassinat B, Chomienne C et al. Transient hematologic and clinical effect of E21R in a child with end-stage juvenile myelomonocytic leukemia. Blood 2002; 99: 2615–2616.

    CAS  PubMed  Google Scholar 

  94. Iversen PO, Emanuel PD, Sioud M . Targeting Raf-1 gene expression by a DNA enzyme inhibits juvenile myelomonocytic leucemia cell growth. Blood 2002; 99: 4147–4153.

    CAS  PubMed  Google Scholar 

  95. Aiyagari AL, Taylor BR, Aurora V, Young SG, Shannon KM . Hematologic effects of inactivating the Ras processing enzyme Rce1. Blood 2003; 101: 2250–2252.

    CAS  PubMed  Google Scholar 

  96. Shimada H, Shima H, Shimasaki N, Yoshihara H, Mori T, Takahashi T . Little response to zoledronic acid in a child of juvenile myelomonocytic leukemia (JMML) harboring the PTPN11 mutation. Ann Oncol 2005; 16: 1400.

    CAS  PubMed  Google Scholar 

  97. Castleberry R, Loh M, Jayaprakash N, Peterson A, Casey V, Chang M et al. Phase II window study of the farnesyltransferase inhibitor R115777 (Zarnestra) in untreated juvenile myelomonocytic leukemia (JMML): a Children's Oncology Group study. Blood 2005; 106 (Suppl 1): 727a–728a.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P D Emanuel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Emanuel, P. Juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia. Leukemia 22, 1335–1342 (2008). https://doi.org/10.1038/leu.2008.162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.162

Keywords

  • myeloproliferative
  • myelodysplastic
  • CMML
  • JMML
  • Ras
  • GM-CSF

This article is cited by

Search

Quick links