Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Prenatal origin of childhood acute lymphoblastic leukemia, association with birth weight and hyperdiploidy

Abstract

Recent studies with very small numbers of patients showed that in some cases of childhood acute lymphoblastic leukemia (ALL), preleukemic cells are detectable on Guthrie cards that were used for newborn screening. We present here the largest series of ALL patients (n=32) in whom Guthrie cards were analyzed for the presence of preleukemic cells. Rearranged immunoglobulin heavy-chain genes were used as a marker for leukemic clones. We combined our set of patients with 17 previously published cases. Preleukemic cells were detected in 31 of all 49 patients (63%). Positive screening cards were not associated with patient's age at diagnosis but were almost always found in patients with hyperdiploidy (10/11; 91%; P=0.04). High birth weight is an established risk factor for childhood ALL. Positive screening cards were strongly associated with low birth weight (P=0.01). In conclusion, the majority of childhood B-precursor ALL arise prior to birth. In the search for causes of childhood leukemia we should concentrate on prenatal factors as well as postnatal factors. Our results suggest that autologous cord bloods could be a poor choice as the source of stem cells for transplantation in leukemia, which may contain preleukemic cells. Pending the development of suitable methods, childhood leukemia is a potentially screenable disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Infante-Rivard C, Deadman JE . Material occupational exposure to extremely low frequency magnetic fields during pregnancy and childhood leukemia. Epidemiology 2003; 14: 437–441.

    PubMed  Google Scholar 

  2. Wen W, Shu XO, Potter JD, Severson RK, Buckley JD, Reaman GH et al. Parental medication use and risk of childhood acute lymphoblastic leukemia. Cancer 2002; 95: 1786–1794.

    Article  PubMed  Google Scholar 

  3. Shaw AK, Infante-Rivard C, Morrison HI . Use of medication during pregnancy and risk of childhood leukemia (Canada). Cancer Causes Control 2004; 15: 931–937.

    Article  PubMed  Google Scholar 

  4. Alexander FE, Patheal SL, Biondi A, Brandalise S, Cabrera M-E, Chan LC et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res 2001; 61: 2542–2546.

    CAS  PubMed  Google Scholar 

  5. Naumburg E, Bellocco R, Cnattingius S, Jonzon A, Ekbom A . Perinatal exposure to infection and risk of childhood leukemia. Med Pediatr Oncol 2002; 38: 391–397.

    Article  PubMed  Google Scholar 

  6. Wasserman R, Galili N, Ito Y, Reichard BA, Shane S, Rovera G . Predominance of fetal type HJH, joining in young children with B precursor lymphoblastic leukemia as evidence for an in utero transforming event. J Exp Med 1992; 176: 1577–1581.

    Article  CAS  PubMed  Google Scholar 

  7. Steenbergen EJ, Verhagen OJ, van Leeuwen EF, Behrendt H, Merle PA, Wester MR et al. B precursor acute lymphoblastic leukemia third complementarity-determining regions predominantly represent an unbiased recombination repertoire: leukemic transformation frequently occurs in fetal life. Eur J Immunol 1994; 24: 900–908.

    Article  CAS  PubMed  Google Scholar 

  8. Ford AM, Pombo-de-Oliveira MS, McCarthy KP, MacLean JM, Carrico KC, Vincent RF et al. Monoclonal origin of concordant T-cell malignancy in identical twins. Blood 1997; 89: 281–285.

    CAS  PubMed  Google Scholar 

  9. Ford AM, Bennett CA, Price CM, Bruin MCA, Van Wering ER, Greaves M . Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci 1998; 95: 4584–4588.

    Article  CAS  PubMed  Google Scholar 

  10. Wiemels JL, Ford AM, Van Wering ER, Postma A, Greaves M . Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood 1999; 94: 1057–1062.

    CAS  PubMed  Google Scholar 

  11. Maia AT, van der Velden VHJ, Harrison CJ, Szczepanski T, Williams MD, Griffiths MJ et al. Prenatal origin of hyperdiploid acute lymphoblastic leukemia in identical twins. Leukemia 2003; 17: 2202–2206.

    Article  CAS  PubMed  Google Scholar 

  12. Kempski H, Mensa-Bonsu KA, Kearney L, Jalali GR, Hann I, Khurshid M et al. Prenatal chromosomal diversification of leukemia in monozygotic twins. Genes Chromosomes Cancer 2003; 37: 406–411.

    Article  PubMed  Google Scholar 

  13. Teuffel O, Betts DR, Dettling M, Schaub R, Schäfer BW, Niggli FK . Prenatal origin of separate evolution of leukemia in identical twins. Leukemia 2004; 18: 1624–1629.

    Article  CAS  PubMed  Google Scholar 

  14. Greaves MF . Childhood leukaemia. BMJ 2002; 324: 283–287.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Greaves MF, Maia AT, Wiemels JL, Ford AM . Leukemia in twins: lessons in natural history. Blood 2003; 102: 2321–2333.

    Article  CAS  PubMed  Google Scholar 

  16. Gale KB, Ford AM, Repp R, Borkhardt A, Keller C, Eden OB et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA 1997; 94: 13950–13954.

    Article  CAS  Google Scholar 

  17. Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 1999; 354: 1499–1503.

    Article  CAS  Google Scholar 

  18. Hjalgrim LL, Madsen HO, Melbye M, Jørgensen P, Christiansen M, Andersen MT et al. Presence of clone-specific markers at birth in children with acute lymphoblastic leukaemia. Br J Cancer 2002; 87: 994–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McHale CM, Wiemels JL, Zhang L, Ma X, Buffler PA, Guo W et al. Prenatal origin of TEL-AML1-positive acute lymphoblastic leukemia in children born in California. Genes Chromosomes Cancer 2003; 37: 36–43.

    Article  CAS  Google Scholar 

  20. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    Article  CAS  PubMed  Google Scholar 

  21. Yagi T, Hibi S, Tabata Y, Kuriyama K, Teramura T, Hashida T et al. Detection of clonotypic IGH and TCR rearrangements in the neonatal blood spots of infants and children with B-cell precursor acute lymphoblastic leukemia. Blood 2000; 96: 264–268.

    CAS  PubMed  Google Scholar 

  22. Fasching K, Panzer S, Haas OA, Marschalek R, Gadner H, Panzer-Grümayer R . Presence of clone-specific antigen receptor gene rearrangements at birth indicates an in utero origin of diverse types of early childhood acute lymphoblastic leukemia. Blood 2000; 95: 2722–2724.

    CAS  PubMed  Google Scholar 

  23. Taub JW, Konrad MA, Ge Y, Naber JM, Scott JS, Matherly LH et al. High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood 2002; 99: 2992–2996.

    Article  CAS  Google Scholar 

  24. Felix CA, Poplack DG, Reaman GH, Steinberg SM, Cole DE, Taylor BJ et al. Characterization of immunoglobulin and T cell receptor gene patterns in B cell precursor acute lymphoblastic leukemia of childhood. J Clin Oncol 1990; 8: 431–442.

    Article  CAS  PubMed  Google Scholar 

  25. Blackwell TK, Alt FM . Molecular characterization of the lymphoid V(D)J recombination activity. J Biol Chem 1989; 264: 10327–10330.

    CAS  PubMed  Google Scholar 

  26. Tonegawa S . Somatic generation of antibody diversity. Nature 1983; 302: 575–581.

    Article  CAS  PubMed  Google Scholar 

  27. Aubin J, Davi F, Nguyen-Salomen F, Leboeuf D, Debert C, Taher M et al. Description of a novel FR1 IgH PCR strategy and its comparison with three other strategies for the detection of clonality in B cell malignancies. Leukemia 1995; 9: 471–479.

    CAS  PubMed  Google Scholar 

  28. Ramasamy J, Brisco M, Morley A . Improved PCR method for detecting monoclonal immunoglobulin heavy chain rearrangement in B cell neoplasms. J Clin Pathol 1992; 45: 770–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deane M, Norton JD . Immunoglobulin heavy chain variable region family usage is independent of tumor cell phenotype in human B lineage leukemias. Eur J Immunol 1990; 20: 2209–2217.

    Article  CAS  PubMed  Google Scholar 

  30. Berman JE, Mellis SJ, Pollock R, Smith CL, Suh H, Heinke B et al. Content and organization of the human Ig VH locus: definition of three new VH families and linkage to the Ig Ch locus. EMBO J 1988; 7: 727–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ichihara Y, Matsuoka H, Kurosawa Y . Organization of human immunoglobulin heavy chain diversity gene loci. EMBO J 1988; 7: 4141–4150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ravetch JV, Siebenlist U, Korsmeyer S, Waldmann T, Leder P . Structure of the human immunoglobulin μ locus: characterization of embryonic and rearranged J and D genes. Cell 1981; 27: 583–591.

    Article  CAS  PubMed  Google Scholar 

  33. Gruhn B, Hongeng S, Yi H, Hancock ML, Rubnitz JE, Neale GAM et al. Minimal residual disease after intensive induction therapy in childhood acute lymphoblastic leukemia predicts outcome. Leukemia 1998; 12: 675–681.

    Article  CAS  PubMed  Google Scholar 

  34. Ouspenskaia MV, Johnston DA, Roberts WM, Estrov Z, Zipf TF . Accurate quantitation of residual B-precursor acute lymphoblastic leukemia by limiting dilution and a PCR-based detection system: a description of the method and the principles involved. Leukemia 1995; 9: 321–328.

    CAS  PubMed  Google Scholar 

  35. Lwok S, Higuchi R . Avoiding false positives with PCR. Nature 1989; 339: 237–238.

    Article  Google Scholar 

  36. Neale GA, Menarguez J, Kitchingman GR, Fitzgerald TJ, Koehler M, Mirro Jr J et al. Detection of minimal residual disease in T cell acute lymphoblastic leukaemia using polymerase chain reaction predicts impending relapse. Blood 1991; 78: 739–747.

    CAS  PubMed  Google Scholar 

  37. Simmonds P, Balfe P, Peutherer JF, Ludlam CA, Bishop JO, Brown AJ . Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J Virol 1990; 64: 864–872.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tower R, Spector L . The epidemiology of childhood leukemia with a focus on birth weight and diet. Crit Rev Clin Lab Sci 2007; 44: 203–242.

    Article  PubMed  Google Scholar 

  39. Mori H, Colman SM, Xiao Z, Ford AM, Healy LE, Donaldson C et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA 2002; 99: 8242–8247.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The analysis of the patients from Detroit was supported by a grant from the Gerber Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B Gruhn or D Steinbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruhn, B., Taub, J., Ge, Y. et al. Prenatal origin of childhood acute lymphoblastic leukemia, association with birth weight and hyperdiploidy. Leukemia 22, 1692–1697 (2008). https://doi.org/10.1038/leu.2008.152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.152

Keywords

This article is cited by

Search

Quick links