Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Disorders

New mutations of MPL in primitive myelofibrosis: only the MPL W515 mutations promote a G1/S-phase transition

Abstract

MPL (or thrombopoietin receptor, TPO-R) 515 mutations have recently been described in 5–10% of primitive myelofibrosis (PMF) cases as decisive oncogenic events capable of triggering the disease. Here we report additional mutations located in exon 10 of MPL in PMF patients. We investigated whether these new mutations also lead to cell transformation. MPL exon 10 was systematically sequenced in 100 PMF patients. Seven different mutations were found in eight patients. We introduced each MPL mutant in Ba/F3 cells to determine whether they correspond to gain-of-function mutations. Only MPL W515 mutations induced (1) Ba/F3 proliferation independently of growth factors, (2) tumorigenesis in nude mice, (3) spontaneous activation of JAK/STAT, RAS/MAPK and PI3K transduction pathways and (4) increased S phase of cell cycle. Similar to all other myeloproliferative disorder oncogenic events identified to date, these results demonstrate that only the detected MPL W515 mutations trigger spontaneous MPL activation leading to a G1/S transition activation. The other mutations are devoid of significant transforming activity but may synergize with JAK2 V617F or other not yet characterized molecular events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dameshek W . Some speculations on the myeloproliferative syndromes. Blood 1951; 6: 372–375.

    CAS  PubMed  Google Scholar 

  2. Spivak JL . The chronic myeloproliferative disorders: clonality and clinical heterogeneity. Semin Hematol 2004; 41 (2 Suppl 3): 1–5.

    Article  CAS  PubMed  Google Scholar 

  3. Delhommeau F, Dupont S, Tonetti C, Masse A, Godin I, Le Couedic JP et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 2007; 109: 71–77.

    Article  CAS  PubMed  Google Scholar 

  4. Chaligne R, James C, Tonetti C, Besancenot R, Le Couedic JP, Fava F et al. Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood 2007; 110: 3735–3743.

    Article  CAS  PubMed  Google Scholar 

  5. Gishizky ML, Johnson-White J, Witte ON . Efficient transplantation of BCR-ABL-induced chronic myelogenous leukemia-like syndrome in mice. Proc Natl Acad Sci USA 1993; 90: 3755–3759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  PubMed  Google Scholar 

  7. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  PubMed  Google Scholar 

  8. Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005; 106: 2162–2168.

    Article  CAS  PubMed  Google Scholar 

  9. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  PubMed  Google Scholar 

  10. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  11. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    Article  CAS  PubMed  Google Scholar 

  12. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Staerk J, Lacout C, Sato T, Smith SO, Vainchenker W, Constantinescu SN . An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood 2006; 107: 1864–1871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abe M, Suzuki K, Inagaki O, Sassa S, Shikama H . A novel MPL point mutation resulting in thrombopoietin-independent activation. Leukemia 2002; 16: 1500–1506.

    Article  CAS  PubMed  Google Scholar 

  15. Ding J, Komatsu H, Wakita A, Kato-Uranishi M, Ito M, Satoh A et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood 2004; 103: 4198–4200.

    Article  CAS  PubMed  Google Scholar 

  16. Goncalves F, Lacout C, Villeval JL, Wendling F, Vainchenker W, Dumenil D . Thrombopoietin does not induce lineage-restricted commitment of Mpl-R expressing pluripotent progenitors but permits their complete erythroid and megakaryocytic differentiation. Blood 1997; 89: 3544–3553.

    CAS  PubMed  Google Scholar 

  17. Takahashi A, Kono K, Amemiya H, Iizuka H, Fujii H, Matsumoto Y . Elevated caspase-3 activity in peripheral blood T cells coexists with increased degree of T-cell apoptosis and down-regulation of TCR zeta molecules in patients with gastric cancer. Clin Cancer Res 2001; 7: 74–80.

    CAS  PubMed  Google Scholar 

  18. Helson L, Das SK, Hajdu SI . Human neuroblastoma in nude mice. Cancer Res 1975; 35: 2594–2599.

    CAS  PubMed  Google Scholar 

  19. Onishi M, Mui AL, Morikawa Y, Cho L, Kinoshita S, Nolan GP et al. Identification of an oncogenic form of the thrombopoietin receptor MPL using retrovirus-mediated gene transfer. Blood 1996; 88: 1399–1406.

    CAS  PubMed  Google Scholar 

  20. Alexander WS, Metcalf D, Dunn AR . Point mutations within a dimer interface homology domain of c-Mpl induce constitutive receptor activity and tumorigenicity. EMBO J 1995; 14: 5569–5578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Souyri M, Vigon I, Penciolelli JF, Heard JM, Tambourin P, Wendling F . A putative truncated cytokine receptor gene transduced by the myeloproliferative leukemia virus immortalizes hematopoietic progenitors. Cell 1990; 63: 1137–1147.

    Article  CAS  PubMed  Google Scholar 

  22. Palacios R, Steinmetz M . Il-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell 1985; 41: 727–734.

    Article  CAS  PubMed  Google Scholar 

  23. Drachman JG, Griffin JD, Kaushansky K . The c-Mpl ligand (thrombopoietin) stimulates tyrosine phosphorylation of Jak2, Shc, and c-Mpl. J Biol Chem 1995; 270: 4979–4982.

    Article  CAS  PubMed  Google Scholar 

  24. Thompson JE, Cubbon RM, Cummings RT, Wicker LS, Frankshun R, Cunningham BR et al. Photochemical preparation of a pyridone containing tetracycle: a Jak protein kinase inhibitor. Bioorg Med Chem Lett 2002; 12: 1219–1223.

    Article  CAS  PubMed  Google Scholar 

  25. Jain SK, Susa M, Keeler ML, Carlesso N, Druker B, Varticovski L . PI 3-kinase activation in BCR/abl-transformed hematopoietic cells does not require interaction of p85 SH2 domains with p210 BCR/abl. Blood 1996; 88: 1542–1550.

    CAS  PubMed  Google Scholar 

  26. Matulonis U, Salgia R, Okuda K, Druker B, Griffin JD . Interleukin-3 and p210 BCR/ABL activate both unique and overlapping pathways of signal transduction in a factor-dependent myeloid cell line. Exp Hematol 1993; 21: 1460–1466.

    CAS  PubMed  Google Scholar 

  27. Jin L, Siritanaratkul N, Emery DW, Richard RE, Kaushansky K, Papayannopoulou T et al. Targeted expansion of genetically modified bone marrow cells. Proc Natl Acad Sci USA 1998; 95: 8093–8097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cortez D, Reuther G, Pendergast AM . The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene 1997; 15: 2333–2342.

    Article  CAS  PubMed  Google Scholar 

  29. Lacronique V, Boureux A, Monni R, Dumon S, Mauchauffe M, Mayeux P et al. Transforming properties of chimeric TEL-JAK proteins in Ba/F3 cells. Blood 2000; 95: 2076–2083.

    CAS  PubMed  Google Scholar 

  30. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  31. Walz C, Crowley BJ, Hudon HE, Gramlich JL, Neuberg DS, Podar K et al. Activated Jak2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem 2006; 281: 18177–18183.

    Article  CAS  PubMed  Google Scholar 

  32. Williams DM, Kim AH, Rogers O, Spivak JL, Moliterno AR . Phenotypic variations and new mutations in JAK2 V617F-negative polycythemia vera, erythrocytosis, and idiopathic myelofibrosis. Exp Hematol 2007; 35: 1641–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Caroline Lefebvre for helpful discussions and improving the eEnglish paper. This work was supported by grants from Institut National de la Santé et la Recherche Médicale (INSERM) and La Ligue Nationale contre le Cancer (équipe labellisée 2004 and 2007). RC is supported by the Research Ministry. Author's contributions: RC, CT, RB, SG performed cellular experiments. SG, WV, PM, LR, JJK and MCLBK contributed to the recruitment of the patients. RC, WV, LR and SG designed the study and analyzed the data. RC, CM, WV and SG wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Giraudier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaligné, R., Tonetti, C., Besancenot, R. et al. New mutations of MPL in primitive myelofibrosis: only the MPL W515 mutations promote a G1/S-phase transition. Leukemia 22, 1557–1566 (2008). https://doi.org/10.1038/leu.2008.137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.137

Keywords

This article is cited by

Search

Quick links