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Following injury, pathologically activated vocal fold fibroblasts (VFFs) can engage in disordered extracellular matrix (ECM)
remodeling, leading to VF fibrosis and impaired voice function. Given the importance of scar VFFs to phenotypically
appropriate in vitro modeling of VF fibrosis, we pursued detailed characterization of scar VFFs obtained from surgically
injured rat VF mucosae, compared with those obtained from experimentally naïve, age-matched tissue. Scar VFFs initially
exhibited a myofibroblast phenotype characterized by increased proliferation, increased Col1a1 transcription and
collagen, type I synthesis, increased Acta2 transcription and α-smooth muscle actin synthesis, and enhanced contractile
function. These features were most distinct at passage 1 (P1); we observed a coalescence of the scar and naïve VFF
phenotypes at later passages. An empirical Bayes statistical analysis of the P1 cell transcriptome identified 421 genes that
were differentially expressed by scar, compared with naïve, VFFs. These genes were primarily associated with the wound
response, ECM regulation, and cell proliferation. Follow-up comparison of P1 scar VFFs and their in vivo tissue source
showed substantial transcriptomic differences. Finally, P1 scar VFFs responded to treatment with hepatocyte growth factor
and transforming growth factor-β3, two biologics with reported therapeutic value. Despite the practical limitations
inherent to working with early passage cells, this experimental model is easily implemented in any suitably equipped
laboratory and has the potential to improve the applicability of preclinical VF fibrosis research.
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Fibroblasts, the most abundant cells of many connective
tissues, regulate tissue homeostasis under quiescent condi-
tions and drive regeneration and structural reorganization
during wound healing.1 Research conducted over the past few
decades has highlighted the role of resident and migratory
fibroblasts in initiating and sustaining chronic fibrosis in key
organ systems, such as the kidney, liver, lung, and skin.2–7

This body of work has shown that fibroblast phenotype varies
as a function of both host organ8 and the physiologic (or
pathophysiologic) state of the organ.4 Consequently, although
all fibroblasts share certain defining features, the phenotype of
one fibroblast subtype is not necessarily predictive of another.

Vocal fold fibroblasts (VFFs) populate the lamina propria
of the VF mucosa and are responsible for synthesizing its
extracellular matrix (ECM).9 This ECM has exquisite
viscoelasticity that supports high-frequency, self-sustained
tissue oscillation for voice production.10,11 In response to
sustained inflammatory and profibrotic stimuli, however,

activated VFFs can pathologically remodel the ECM, resulting
in dense and disorganized collagen and fibronectin, along
with reduced elastin, decorin, and hyaluronic acid.12–14 Such
ECM protein and glycan alterations are the hallmarks of
chronic VF scar and typically result in viscoelastic deteriora-
tion and intractable voice impairment.15

One approach to treating chronic VF scar is to directly
manipulate VFF behavior using an antifibrotic therapy.
Several preclinical in vitro studies have pursued such an
approach using biologics,16,17 biomaterials,18 and cell-based
interventions;19 however, this work has typically been
conducted using naïve VFFs under the assumption that the
treatment-response phenotype of these cells is generalizable to
that of scar VFFs. This assumption may be incorrect: recent
data generated using scar VFFs isolated from two ferrets20,21

and from a single human patient22–24 suggest that, compared
with naïve cells, scar VFFs exhibit different growth kinetics,
cytokine profiles and ECM-synthesis rates, as well as
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enhanced lipopolysaccharide responsiveness and contractile
myofibroblastic features. These observations, which are
consistent with findings in the wider fibroblast literature,4

highlight the value of conducting fibrosis-related in vitro work
with cells obtained from scarred tissue.

Given the apparent importance of scar VFFs to phenoty-
pically appropriate in vitro modeling of VF fibrosis, and the
paucity of current data in this area, we pursued detailed
characterization of scar VFFs obtained from surgically injured
rat VF mucosae, compared with VFFs from experimentally
naïve, age-matched tissue. The rat is a well-validated model in
VF biology and its in vivo scar phenotype has been extensively
described.13,25–27 We used a larger set of independent
biological replicates than has been previously reported and
examined cell phenotypes across serial-culture passages
beginning at first passage. We first evaluated overall cell
proliferation and apoptosis, collagen production, evidence of
myofibroblast differentiation, and contractile function. We
then measured transcriptomic differences between scar and
naïve VFF, as well as between early passage scar VFFs and
their in vivo tissue source.28 Finally, we examined scar VFF
responsiveness to hepatocyte growth factor (HGF) and
transforming growth factor-β3 (TGF-β3), two biologics with
reported therapeutic value.17,29,30

MATERIALS AND METHODS
Animals
Fischer 344 male rats (Charles River, Wilmington, MA, USA)
were used for all experiments. Bilateral VF injuries were
created in 120-day-old rats using a surgical stripping
procedure and tissues were harvested following a 60-day scar
maturation period.13 Experimentally naïve control tissues
were harvested from age-matched (180-day-old) rats. All
animal experiments were conducted in accordance with the
Public Health Service Policy on Humane Care and Use of
Laboratory Animals, and the Animal Welfare Act (7 U.S.C. et
seq.); the Institutional Animal Care and Use Committee of
the University of Wisconsin-Madison approved all protocols.

Cell Isolation and Culture
Explant cell culture was conducted using previously reported
techniques for primary VFF.31,32 Scarred and naïve rat VF
mucosae were obtained from freshly harvested rat larynges
using a dissection microscope. Each pair of bilateral mucosae
was minced in a 10 cm culture dish and immersed in DMEM
supplemented with 10% FBS, antibiotics and antimycotics
(all culture reagents from Sigma-Aldrich, St Louis, MO,
USA). Cells were cultured at 37 °C in 5% CO2 and medium
was changed twice weekly. Outgrown primary cells were
trypsinized and passaged into fresh 10 cm culture dishes
14–21 days after initial explant plating (mean yield, 12 × 104

VFF; range, 8 ~ 14.5 × 104 VFF). Subsequent passaging was
performed when cells were 80% confluent: VFFs were
trypsinized, counted, and plated in 10 cm culture dishes at a

density of 2–3 × 105 cells/dish (split ratio, 1:3-1:5). VFF
cultures were maintained through P4.

Cell Proliferation Analysis
VFFs were plated in 24-well plates at a density of 104 cells/well
and cultured. After 6 days, cells were trypsinized and counted
using a hematocytometer. All counts were performed in
technical duplicate. Population doubling time was calculated
as 2N=Cf /Ci, where N denotes doubling time, Cf denotes the
final cell count at time of harvest, and Ci denotes the initial
cell count at time of seeding.33

Gel Contraction Assay
The gel contraction assay was performed as previously
reported.34 In brief, 24-well plates were pre-incubated with
PBS containing 1% BSA (Sigma-Aldrich) for at least 1 h at
37 °C, washed twice with PBS, and air dried. Rat tail collagen,
type I (BD Biosciences, Franklin Lakes, NJ, USA) was
prepared to a final concentration of 2.4 mg/ml in PBS and
seeded with 12.5 × 104 P1 VFFs/ml. Four hundred μl of the
collagen/cell mixture was added to each culture well and
polymerized for 30 min at 37 °C. Culture medium was added
to each well and the gels were detached from the plate surface
with gentle shaking. VFF culture was performed for 72 h and
gels were imaged at 0, 24, 48, and 72 h. Polymerized gels
containing no cells were used as negative controls. Gel area
was calculated as A= dmax dmin π/4, where A denotes area,
dmax denotes maximum gel diameter, and dmin denotes
minimum gel diameter.

Growth Factor Treatment Experiments
P1 scar VFFs were plated in six-well plates at a density of
2 × 104 cells/well and cultured until 80% confluent. Following
24 h of serum starvation, cells were treated with 0, 1, 10, or
100 ng/ml HGF (PeproTech, Rocky Hill, NJ, USA); or with 0,
1, 10, or 100 ng/ml TGF-β3 (R&D Systems, Minneapolis,
MN, USA). Cells were harvested 24 h post-treatment and
processed for qRT-PCR.

Immunocytochemistry
P1 VFFs were placed on chamber slides, fixed with 4%
paraformaldehyde, and permeabilized with 0.5% Triton
X-100 (Sigma-Aldrich). Image-iT FX signal enhancer
(Invitrogen, Carlsbad, CA, USA) was applied for 30 min to
reduce nonspecific fluorescent signals. Blocking was
performed using Block Ace (AbD Serotec, Raleigh, NC,
USA). Cells were sequentially incubated with a primary
antibody at room temperature (RT) for 1 h, a relevant
secondary antibody at RT for 1 h, and counterstained with
DAPI nuclear dye (MP Biomedicals, Santa Ana, CA, USA).

The primary antibodies used were: goat anti-collagen, type
I (1:20; 1310-01, Southern Biotechnology, Birmingham, AL,
USA); rabbit anti-α-SMA (1:100; ab5694, Abcam, Cambridge,
MA, USA), rabbit anti-Ki-67 (1:50; ab16667, Abcam); and
rabbit anti-CC3 (1:50; #9969, Cell Signaling Technology,
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Danvers, MA, USA). The secondary antibodies used were:
Alexa Fluor 594 goat anti-rabbit or donkey anti-goat IgG
(1:400, A-11012 or A-11058; Invitrogen). Negative control
sections exposed to the secondary antibody in the absence of
the primary antibody revealed no immunosignals.

RNA Isolation and qRT-PCR
Total RNA was isolated from cells using the RNeasy Mini kit
(Qiagen, Valencia, CA, USA) according to the manufacturer’s
instructions. Samples were treated with DNase I to eliminate
contamination by genomic DNA (Ambion, Austin, TX, USA).
RNA yield and purity were evaluated by measuring concen-
tration and OD260:280 values with a NanoDrop ND-1000
spectrophotometer (NanoDrop, Wilmington, DE, USA) and
by visualizing 18S and 28S rRNA bands on a 1% agarose gel.
cDNA was generated by reverse transcription using TaqMan
reagents (Applied Biosystems, Foster City, CA, USA) accord-
ing to the manufacturer’s instructions.

qRT-PCR amplification was performed using the following
rat-specific commercial primers (QuantiTect; Qiagen):
QT01615901 (Acta2); QT00370622 (Col1a1); QT01083537
(Col3a1); QT00179333 (Fn1); QT00195958 (Sdha). Reactions
were performed on a 7500 Fast Real-Time PCR system
(Applied Biosystems) using the QuantiTect SYBR Green PCR
kit (Qiagen). Each 25 μl total volume reaction contained
12.5 μl 2 × QuantiTect master mix, 2.5 μl 10 × QuantiTect
primer assay, and 10 μl cDNA template diluted in nuclease-
free H2O. The cycling program was as follows: initial
activation at 95 °C for 15 min, followed by 40 cycles of 94 °
C for 15 s, 55 °C for 30 s, and 72 °C for 30 s. All PCR reactions
were performed in technical duplicate. Relative mRNA
expression was calculated using the standard curve method;
all values were normalized against reference gene Sdha.35

Microarrays
Biotinylated antisense cRNA was prepared by single round
in vitro amplification of 0.9 μg input RNA using the
MessageAmp II-Biotin Enhanced aRNA kit (Ambion)
according to the manufacturer’s instructions (the in vitro
transcription reaction was performed at 37 °C for 14 h).
Poly-A RNA controls (Affymetrix, Santa Clara, CA, USA)
were spiked into each reaction. Fragmented cRNA sample
quality was confirmed using 2% agarose gel electrophoresis
and Agilent 2100 Bioanalyzer analysis. Samples were hybri-
dized to Affymetrix GeneChip Rat Genome 230 2.0 arrays at
45 °C for 16 h. Post-processing was performing using the
GeneChip Fluidics Station 450, arrays were scanned using the
GC3000 G7 scanner, and fluorescent intensity data were
background-corrected and extracted using Expression Con-
sole software (Affymetrix). All hybridization, post-processing
and scanning procedures were performed according to
Affymetrix protocols; all control parameters were within the
manufacturer’s guidelines. Microarray data have been depos-
ited with the Gene Expression Omnibus (http://www.ncbi.
nlm.nih.gov/geo/) under accession number GSE62204.

Western Blotting
VFFs were lysed in RIPA buffer (Thermo Fisher, Waltham,
MA, USA) and total protein was extracted according to the
manufacturer’s instructions. Protein concentration was
measured using the Pierce BCA assay kit (Thermo Fisher)
according to the manufacturer’s instructions. SDS-PAGE
was performed using a 10% acrylamide gel (Bio-Rad,
Hercules, CA, USA) with 30 μg total protein load per lane.
Following transfer, PVDF membranes were treated with 5%
nonfat dry milk at RT for 1 h to prevent nonspecific binding,
and then incubated with the following primary antibodies at
4 °C overnight: rabbit anti-α-SMA (1:500; ab5694, Abcam);
goat anti-collagen, type I (1:400; 1310-01, Southern
Biotechnology); mouse anti-Sdha (1:3000; ab14715, Abcam).
Blots were detected using relevant HRP-conjugated goat anti-
mouse, goat-anti-rabbit and rabbit anti-goat IgG secondary
antibodies (1:5000; 170-5047, 170-5046 and 172-1034,
Bio-Rad) at RT for 1 h and the Immun-Star WesternC
chemiluminesence kit (Bio-Rad). Images were captured using
the ImageQuant LAS 4000 mini biomolecular imager
(GE Healthcare, Piscataway, NJ, USA). Densitometric analysis
was performed using ImageJ;36 band densities were
normalized against those of reference protein Sdha. Analysis
of collagen, type I was performed using both bands
(corresponding to the protein’s α-1 and α-2 chains).

Statistical Analyses
All experiments were performed with n= 3–5 independent
biological replicates per condition; the sample size for each
experiment is reported in the relevant figure legend. For each
analysis, n= 2–5 technical replicates were averaged and all
statistical analyses were performed using biological replicates.
Proliferation, qRT-PCR and western blot densitometric data
were analyzed using two-way analysis of variance (ANOVA)
with cell phenotype (scar vs naïve) and culture passage as
independent variables; qRT-PCR data from the growth factor
treatment experiment were analyzed using one-way ANOVA;
gel contraction data were analyzed using repeated-measures
ANOVA. In all ANOVA models, if the omnibus F-test
revealed a significant difference, planned pairwise compar-
isons were performed using Fisher’s protected least significant
difference method. Data were rank-transformed where
needed to meet the equal variance assumptions of ANOVA.

Microarray data were analyzed within the R statistical
computing environment.37 Affymetrix probe-level data were
preprocessed using Robust Multi-Array Analysis (RMA),38

based on evidence of improved precision over default
Affymetrix algorithms.39 Probes without a corresponding
gene symbol were purged from all gene-level analyses. In cases
where multiple probes corresponded to a single gene symbol,
we calculated the average expression for each probe across
arrays and selected the probe with the median average
expression. In the case of an even number of matched probes,
we selected the larger of the two median probe intensities.
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The resulting normalized data were clustered to check for
consistency prior to formal analysis.

Expression analysis was performed using an empirical
Bayes approach as implemented in the R package EBarrays.40

A lognormal-normal moderated variance (LNNMV) model
was fit to the data; parameter estimates were obtained via 20
iterations of an expectation-maximization (EM) algorithm: in
all cases, convergence was achieved after 10 iterations.
Diagnostic testing of the LNN assumption in EBarrays was
performed using quantile–quantile (QQ) plots of log intensity
data vs a standard normal distribution. We further used QQ
plots to evaluate the assumption of a scaled inverse chi-square
prior on the gene-specific variances used in the LNNMV
model. The diagnostics showed no violations of model
assumptions.

Using the output from EBarrays, we compared expression
levels in the scar and naïve VFF conditions at P1, and further
compared these in vitro data with a previously reported in vivo
rat VF mucosal injury microarray data set.28 This pre-existing
data set was generated using an identical rat strain and age at
the time of injury, identical tissue harvest at 60 days post-
injury, as well as identical RNA extraction, amplification,
hybridization, and post-processing protocols. For all compar-
isons, thresholding was performed using 40.95 posterior
probability of differential expression (DE), providing false
discovery rate control at the 5% level.

Tests of enrichment via overrepresentation were conducted
using the R package allez,41 the Gene Ontology (GO) data
set,42 and genes identified as DE in the scar, compared with
naïve, VFF condition at P1. Overrepresented GO terms
required at least 25 distinct DE genes and a Z-score 45,
and were further processed using the REViGO semantic
similarity and term redundancy algorithm43 followed by
Cytoscape 2.8.2.44 Heat maps summarizing expression data
for DE gene lists of interest were generated using the
Matrix2png utility.45

RESULTS
Scar VFFs Exhibit Increased Proliferation at Early
Passages
We first compared the growth kinetics of primary
VFFs isolated from naïve and scarred rat VF mucosae. Given
the low density of VFFs in naïve rat VF mucosa25 and a
decision not to pool cells across biological replicates, we
obtained insufficient cell yields at first passage to perform
within-passage growth curve experiments. We therefore
counted cells at the time of initial seeding and following
6 days of culture, and used these data to calculate
population doubling times for VFFs at passage 1 (P1) through
P4. Scar VFFs proliferated more rapidly (and exhibited
correspondingly shorter doubling times) compared with naïve
cells at P1–P3 (Po0.05; Figure 1a). No significant
differences were observed at P4 (P40.05). These quantitative
data were corroborated by immunocytochemistry (ICC)
at P1 showing a greater number of scar VFF nuclei expressing

the proliferation marker Ki-67 (Figure 1b). The apoptosis
marker cleaved caspase 3 (CC3) was rarely expressed by either
VFF phenotype (Figure 1b).

Scar VFFs Exhibit Increased Col1a1 Transcription and
Collagen, Type I Synthesis at P1
Disordered ECM is a defining feature of VF scar in vivo.12–14

We therefore examined the transcription of key ECM genes
Col1a1, Col3a1, and Fn1 in naïve and scar VFFs at P1–P4,
using qRT-PCR. Col1a1 transcription was upregulated in scar,
compared with naïve, VFFs at P1 only (Po0.05; Figure 2a);
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Figure 1 Scar VFFs exhibit increased proliferation at early passages.
(a) Cell count data showing greater proliferation of scar VFFs compared
with naïve cells after 6 days (d) incubation at P1–P3. Corresponding
population doubling times (in hours (h)) are also shown. (b) Representative
ICC data showing Ki-67 (red) and CC3 (green) expression in naïve and
scar VFFs at P1. Nuclei are counterstained with DAPI (blue). Ki-67+ cells
were more abundant in the scar, compared with naïve, condition; no
difference was observed for CC3. White arrows indicate Ki-67+ or CC3+

fibroblast nuclei. All experiments were performed with n= 4 biological
replicates per condition. Data are presented as mean± s.e.m. *Po0.05 in
a. Scale bar = 100 μm in b.
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no significant differences were observed for Col3a1 and
Fn1 at any passage (P40.05). We evaluated collagen, type I
abundance at the protein level by western blotting for both
α-1 and α-2 chains, confirming significant upregulation at P1
(Po0.05; Figure 2b) followed by tapering over subsequent
passages. We further corroborated this finding using ICC
performed on cells at P1 (Figure 2c).

Scar VFFs Exhibit a Contractile Myofibroblast Phenotype
at P1
Fibroblasts are one of several cell populations that are capable
of assuming a contractile myofibroblast phenotype during
wound healing,5,46 including in the VF mucosa.26 Myofibro-
blasts are necessary for achieving wound closure and therefore
have an important role in nonpathologic healing; however,
unchecked myofibroblast activation can drive excess tissue
contraction and ECM production, leading to chronic fibrosis
and impaired function.4 To evaluate whether VFFs isolated
from chronically scarred VF mucosae exhibit features of
persistent myofibroblastic activation in vitro, we evaluated
transcription of the myofibroblast marker Acta2 using
qRT-PCR. Similar to our findings for the ECM gene Col1a1,
Acta2 transcription was upregulated at P1 only (Po0.05;
Figure 3a). We corroborated this finding at the protein level
using western blotting and ICC and observed higher
α-smooth muscle actin (α-SMA) abundance in scar,
compared with naïve, VFFs at P1 (Po0.05; Figure 3b and c).

Based on these transcription and immunodetection data,
we next evaluated the contractile ability of P1 VFFs when
cultured in a collagen gel. Compared with naïve control, scar
VFFs showed greater gel contraction capacity over 72 h
(Po0.05; Figure 3d), consistent with having a functional
myofibroblast phenotype at P1.

Analysis of the Scar VFF Transcriptome
Given our experimental data showing differences in the
transcription of fibrosis-related genes by naïve and scar VFFs
at P1, and the importance of comprehensive characterization
of the scar VFF phenotype, we used expression microarrays to
profile the scar VFF transcriptome. We prepared P1 naïve and
scar VFFs for standard analysis using Affymetrix rat genome
expression arrays, evaluated DE using an empirical Bayes
approach,40 and conducted enrichment analysis using GO
annotations.42 A total of 598 probes, corresponding to 421
unique genes, were DE in the scar VFF condition compared
with the naïve control condition. These 421 genes corre-
sponded to enrichment of 73 GO terms (Supplementary
Table S1): the majority (54) of enriched terms were associated
with the biological process domain; fewer terms were
associated with the cellular component (16) and molecular
function (3) domains. Post-processing of these enrichment
data using the REViGO semantic similarity and term
redundancy algorithm43 highlighted biological process terms
associated with cell division and proliferation, adhesion, and
response to wounding; cellular component terms associated
with the ECM and cell nucleus; and molecular function terms
associated with the ECM and microtubule activity (Figure 4a).

We further examined the relative expression of DE genes
associated with three representative GO terms of interest:
response to wounding, ECM, and cell division (Figure 4b).
Scar VFFs overexpressed a variety of transcripts across these
functional categories, including products of the cytokine and
chemokine genes Il1a, Ccl11, and Cxcl5; the collagen family
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genes Col5a1, Col6a1, Col9a1, Col10a1, Col14a1, Col15a1, and
Col27a1; and the cell cycle regulatory genes Ccnb1, Ccnb2,
Ska1, and Cdk1. The DE genes associated with the response to
wounding and ECM terms exhibited a mixture of up- and

downregulation in the scar, compared with naïve, VFF
condition; in contrast, 29 of 30 DE genes associated with
the cell division term were upregulated in the scar VFF
condition. Overall, these transcriptomic data indicate clear
system-level differences between scar and naïve VFFs at P1.

Transcriptome-Level Comparison of In Vitro and In Vivo
Scar Models
Next, we compared the P1 naïve and scar VFF transcriptomes
with previously reported in vivo data from naïve and scarred
VF mucosae.28 These in vivo data were obtained using an
identical rat strain and age at the time of VF injury, an
identical surgical procedure and scar maturation period, and
identical sample processing and microarray protocols.
Comparisons of probes and genes that were DE in the scar,
compared with naïve, conditions in both in vitro and in vivo
models showed limited overlap: 18 probes, corresponding to
14 genes, exhibited DE in both models (Figure 5a). These
transcriptome-level differences were further emphasized by
an analysis of naïve VFF compared with naïve VF mucosa, as
well scar VFF compared with scar VF mucosa (Figure 5b).
Both analyses revealed a substantial number of DE probes
(410 000 in both naïve and scar comparisons) and genes
(46000 in both naïve and scar comparisons) across
experimental systems. Follow-up evaluation of relative
expression levels revealed a number of wound healing,
fibrosis and ECM-related genes (including the previously
evaluated Col1a1 and Acta2 genes) that were highly
upregulated (log2 fold change 43) in the in vitro, compared
with in vivo, condition (Figure 5c). Enrichment analysis of the
6700 DE genes in the in vitro vs in vivo scar comparison
highlighted an array of biological functions consistent with
the system-wide repair program and involvement of epithelial
and endothelial cells, myocytes, leukocytes, and neurons
in vivo (Supplementary Table S2).

Effect of Growth Factor Stimulation on Scar-Related
Transcriptional Activity
Given our data showing clear phenotypic differences between
naïve and scar VFFs at P1, we evaluated the responsiveness of
scar VFFs to stimulation with exogenous HGF and TGF-β3.
These biologics have shown therapeutic potential when
delivered to naïve VFFs in vitro,17,29,47,48 as well as when
delivered to injured or scarred VF mucosae in vivo.17,30,49–51

Treatment with HGF downregulated Col1a1 and Acta2
transcription in a dose-dependent manner (Po0.05; Figure
6a and b). Treatment with TGF-β3 had no effect on Col1a1
(P40.05; Figure 6a) but upregulated Acta2 transcription at all
doses (Po0.05; Figure 6b). These data show that P1 scar
VFFs are amenable to manipulation using growth factors, as
has been reported for their naïve counterparts.

DISCUSSION
In this study, we pursued detailed characterization of scar
VFFs obtained from surgically injured rat VF mucosae,
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Figure 3 Scar VFFs exhibit a contractile myofibroblast phenotype at P1.
(a) qRT-PCR data showing increased Acta2 transcription in scar VFFs
compared with naïve cells at P1 only. (b) Representative western blots
showing α-SMA abundance in naïve and scar VFFs (left panel). Sdha is
shown as a loading control. The Sdha blots are identical to those shown
in Figure 2b, as Col1a and α-SMA were probed on the same membranes.
Corresponding densitometric analysis of α-SMA abundance, normalized to
Sdha (right panel). α-SMA was upregulated in scar VFFs at P1 only.
(c) Representative ICC data showing strong α-SMA (red) immunosignals in
scar, compared with naïve, VFFs at P1. Nuclei are counterstained with
DAPI (blue). White arrows indicate α-SMA+ (myo)fibroblasts. (d) Collagen
gel contraction data showing greater area change in gels seeded with
scar, compared with naïve, VFFs at P1. Quantitative data in a and b are
presented as mean fold change ± s.e.m. vs the naïve VFF condition at the
same passage; gel contraction data in d are presented as percent
change ± s.e.m. vs the initial seeding (0 hour (h)) condition. *Po0.05 in
a, b, d. All experiments were performed with n= 4 biological replicates
per condition. Scale bar = 100 μm in c.
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compared with VFFs from experimentally naïve, age-matched
tissue. The purpose of our experiments was to outline the
parameters of an easily replicated in vitro model for ongoing
preclinical VF fibrosis research. Compared with naïve cells,
scar VFFs exhibited increased proliferation, increased Col1a1

transcription and collagen, type I synthesis, increased Acta2
transcription and α-SMA synthesis, and enhanced contractile
function. These features, which were predominantly asso-
ciated with P1 cells, suggest that VFFs isolated from mature
scar tissue hold a myofibroblast phenotype, despite
histologic,13 and transcriptomic28 data showing that most
wound healing events are completed by this time point
in vivo.

Normally, contractile myofibroblasts are removed by
apoptosis during the final phase of wound healing, leaving a
residual population of quiescent fibroblasts at the site of
injury.4 In some situations, however, myofibroblasts persist at
the wound site and disrupt the resolution of wound healing,
resulting in pathologic outcomes such as hypertrophic and
keloidal scarring.52,53 Given the identification of P1 VFFs with
a contractile myofibroblastic phenotype in this study, our
model appears to represent such persistently (and patholo-
gically) activated VF mucosal cells. Despite showing no
difference in Col3a1 and Fn1 transcription, P1 scar VFFs
synthesized excess collagen, type I compared with naïve VFFs,
a hallmark of fibrotic disorders and a feature of cultured
myofibroblasts isolated from multiple tissue sources.54–56 In
addition, P1–P3 scar VFFs proliferated more rapidly than
P1–P3-naïve VFFs. Previous studies of cultured fibroblasts
and myofibroblasts isolated from wounded or pathologically
fibrotic skin have reported conflicting proliferation data,
however it is important to note that, with the exception of
one study,57 data were collected from cells at P3 and
beyond.58–60 In the VF literature, Kumai et al20 reported
increased proliferation in P3 scar VFFs isolated from
electrocauterized ferret VF mucosae compared with controls,
whereas Jetté et al22 reported reduced proliferation in P5 scar
VFFs isolated from a single human patient, compared with
control cells from an age- and sex-matched donor. These
discrepant findings might reflect methodological differences,
such as the type of injury used to induce scarring, the culture
passage used for in vitro experiments, or the passage
technique itself (eg, differences in split ratio and plating
density).

Our transcriptomic analysis of naïve and scar VFFs at P1
corroborated our initial experimental data and provided

Figure 4 Analysis of the scar VFF transcriptome. (a) Gene ontology-based
enrichment analysis of DE genes in scar, compared with naïve, VFFs at P1.
Enriched ontology terms are depicted as nodes; highly similar terms are
connected by edges. Cellular component terms are green; molecular
function terms are red; biological process terms are blue. Node color
intensity corresponds to the Z-score associated with term enrichment.
Node and label font size are proportional to the generality of the term in
the underlying ontology. (b) Heat maps showing mean-centered log2-
expression data for DE genes associated with the response to wounding,
extracellular matrix, and cell division ontology terms. DE genes are ranked
by log2 fold change (scar normalized to naïve) along the vertical axis. This
experiment was performed with n= 3 biological replicates in the naïve
condition and n= 4 biological replicates in the scar condition.
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additional characterization of the major phenotypic differ-
ences between these cell types. Scar VFFs exhibited a series of
DE genes associated with the wound response, as well as ECM
regulation and cell proliferation. Many of these DE genes
represent pathways and targets with potential experimental
and therapeutic relevance for future studies. In contrast, with
the relatively clear biological function inferred from these
in vitro data, our follow-up comparison of naïve and scar
VFFs with naïve and scarred VF mucosae revealed marked

transcriptomic differences (46000 DE genes in both naïve
and scar comparisons) across model systems. These differ-
ences are not surprising, however, as VF mucosa: (i) contains
substantially more VF epithelial cells than VFFs,25,61 and (ii)
is subject to systemic influences in vivo,62 which differs from
the isolated environment of VFFs in vitro. The in vitro system
does not represent the full biological complexity of the VF
mucosa, but rather provides an experimental tool to
investigate discrete mechanisms that impact its function.
Our findings reiterate that these in vitro and in vitro models
offer complementary, but not interchangeable, approaches to
studying VF fibrosis.

As noted above, we observed clear differences between
naïve and scar VFFs at P1 followed by a coalescence of the
scar and naïve VFF phenotypes at later passages. This pattern
was particularly evident in the proliferation, ECM production
and myofibroblast marker assays and led us to use P1 cells
exclusively for the gel contraction and transcriptomic assays,
as well as the growth factor stimulation experiments.
Variation in ECM-related transcriptional activity across
culture passages has been previously reported in naïve
VFFs.31 Our finding in scar VFFs suggests that these cells,
which exhibit a convincing myofibroblast phenotype at P1,
undergo culture-associated dedifferentiation when outside of
their in vivo tissue niche and eventually reassume a quiescent
phenotype. Therefore, P1 cells may be most appropriate for
conducting fibrosis-related experiments. This conclusion
raises practical considerations, however, as conducting
experiments at P1 gives limited opportunity for expanding
cell numbers and, by extension, limited opportunity to use an
individual animal’s cells for multiple experiments and multi-
ple assays per experiment.

As scar VFFs appear to hold a transient phenotype under
standard culture conditions, it would be helpful to identify
the molecular parameters needed to attenuate or prevent their
dedifferentiation to a quiescent state. It is well established that
TGF-β1 stimulation induces myofibroblast differentiation in
naïve fibroblasts (including in naïve VFFs);17,63,64 however, it
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Figure 6 Effect of growth factor stimulation on scar-related
transcriptional activity. Exogenous HGF stimulation downregulated Col1a1
(a) and Acta2 (b) transcription in scar VFFs at P1 in a dose-dependent
manner, whereas exogenous TGF-β3 stimulation upregulated Acta2
transcription only (b). Data are presented as mean fold change ± s.e.m.
vs the untreated control (Ctl) condition and are log2-transformed to best
represent bidirectional stimulation effects. All experiments were
performed with n= 4 biological replicates per condition. *Po0.05.

580 109

18

DE probes
naïve vs. scar

in vitro
598 probes

in vivo
127 probes

0
2
4
6
8

10
12

sc
ar

na
ïve

10
,81

3
11

,50
6

D
E

 p
ro

be
s/

ge
ne

s 
(x

 1
03  

)
in

 v
iv

o 
vs

. i
n 

vi
tro

 

407 88

Acan
Ccl9
Cldn11
Col10a1
Col9a1

Comp
Myh2
Npas2
Per2
Ptgis

Rassf4
Serpina3n
Serpine1
Slc2a6

14

in vitro
421 genes

in vivo
102 genes

DE genes
naïve vs. scar

6,3
46

6,7
00

sc
ar

na
ïve

probes

genes

in 
viv

o
in 

vit
ro

lo
g 2

 fo
ld

 c
ha

ng
e

7.
3

-9
.0

0

in 
viv

o

in 
vit

ro

7.
0

-1
0.

0
0

Itga11
Itga8

Il6

Lox

Col1a1

Tgfb2
Pdgfrb

Acta2

Col11a1

P4ha3
Col8a1

Col12a1

Fgf18

Col4a1

Loxl2
Ltbp2

scarnaïve

mean-centered

-2 20

log2  expression

Figure 5 Transcriptome-level comparison of in vitro and in vivo scar
models. (a) Venn diagrams showing limited overlap in the DE probe
set/gene set identified in scar VFFs compared with naïve cells (at P1),
and the DE probe set/gene set identified in scarred VF mucosa compared
with naïve mucosa. Fourteen genes were identified as DE in both
experimental systems. (b) Summary of DE probes/genes identified in
direct in vivo vs in vitro comparisons of naïve VFFs and naïve VF mucosa,
and scar VFF and scarred VF mucosa. (c) Heat maps showing mean-
centered log2-expression data for the 6346 DE genes identified in naïve
VFF vs naïve VF mucosa, and the 6700 DE genes identified in scar
VFF vs scarred VF mucosa. DE genes are ranked by log2 fold change
(in vitro normalized to in vivo) along the vertical axis. The annotations
indicate a subset of DE genes associated with wound healing, fibrosis and
ECM that were highly upregulated in the in vitro, compared with in vivo,
condition (log2 fold change43) for both naïve and scar comparisons.
All experiments were performed with n= 3–5 biological replicates per
condition.

Vocal fold fibrosis
Y Kishimoto et al

814 Laboratory Investigation | Volume 96 July 2016 | www.laboratoryinvestigation.org

http://www.laboratoryinvestigation.org


is currently unknown if these culture-induced myofibroblasts
are equivalent to those isolated from fibrotic tissue. Beyond
inducing and maintaining a scar VFF phenotype, directing
these cells from a scar to a naïve, quiescent phenotype has
additional experimental (and therapeutic) value. Previous
work has shown myofibroblast dedifferentiation following
treatment with amniotic membrane stromal extract,65 as well
as with fibroblast growth factor plus heparin.66 Here, we
observed reduced Col1a1 and Acta2 transcription by P1 scar
VFFs following low-dose HGF treatment, consistent with data
from naïve VFFs,29,47,48 late passage scar VFFs,21 and injured
or scarred VF mucosae.49–51 We also observed increased Acta2
transcription following TGF-β3 treatment, which aligns with
data from naïve VFFs showing that although TGF-β3 is
capable of promoting myofibroblast differentiation, it is
substantially less potent than the profibrotic isoforms TGF-β1
and TGF-β2.17

In summary, our data characterize key phenotypic features
of rat scar VFFs at the transcript, transcriptome, protein, and
functional levels. Despite the practical limitations inherent to
working with early passage cells, this experimental model is
easily implemented in any suitably equipped laboratory and
has the potential to improve the applicability of preclinical VF
fibrosis research.

Supplementary Information accompanies the paper on the Laboratory
Investigation website (http://www.laboratoryinvestigation.org)
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