
Insulin promotes macrophage foam cell formation:
potential implications in diabetes-related
atherosclerosis
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The prevalence of atherosclerotic cardiovascular disease is higher in patients with type 2 diabetes, a disorder char-
acterized by hyperinsulinemia and insulin resistance. The role of hyperinsulinemia as an independent participant in the
atherogenic process has been controversial. In the current study, we tested the effect of insulin and the insulin sensitizer,
adiponectin, on human macrophage foam cell formation. We found that both insulin and adiponectin increased the
expression of the type 2 scavenger receptor CD36 by approximately twofold and decreased the expression of the ATP-
binding cassette transporter ABCA1 by 480%. In both cases regulation was post-transcriptional. As a consequence of
these changes, we found that oxidized LDL (oxLDL) uptake was increased by 80% and cholesterol efflux to apolipoprotein
A1 (apoA1) was decreased by B25%. This led to two- to threefold more cholesterol accumulation over a 16-h period. As
reported previously in studies of murine systems, scavenger receptor-A (SR-A) expression on human macrophages was
downregulated by insulin and adiponectin. Insulin and adiponectin did not affect oxLDL-induced secretion of monocyte
attractant protein-1 (MCP-1) and interleukin-6 (IL-6). These studies suggest that hyperinsulinemia could promote
macrophage foam cell formation and thus may contribute to atherosclerosis in patients with type 2 diabetes.
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Cardiovascular disease is the leading cause of death in many
developed countries, and atherosclerosis accounts for most of
the major pathology.1,2 Patients with type 2 diabetes mellitus,
a condition characterized by insulin resistance and com-
pensatory hyperinsulinemia, have a two- to threefold
increased risk of atherosclerotic cardiovascular disease.3–5

Although there have been many studies that support the
causative role of insulin resistance in cardiovascular disease
from both epidemiologic and experimental perspectives,6–11

there is very little evidence supporting a direct cause and
effect relationship between hyperinsulinemia and athero-
sclerosis. Furthermore, the role of hyperinsulinemia as an
independent risk factor has been controversial. Several pro-
spective population studies including the Quebec Cardio-
vascular study showed an association of high plasma insulin
levels with increased risk of coronary heart disease,12–17 but
other studies, such as that of Welin et al18 failed to show such

an association.19 As hyperinsulinemia usually occurs in
states of insulin resistance it is difficult to determine an
independent role for hyperinsulinemia in the pathogenesis of
atherosclerosis.

Excessive lipid accumulation by macrophages has a crucial
role in the initiation and progression of atherosclerosis. Lipid
laden macrophage foam cells accumulate in atheromatous
plaque and promote inflammation by secreting cytokines
that recruit other immune cells to the arterial intima. Foam
cells are generated by uncontrolled uptake of modified LDL,
especially oxidized LDL (oxLDL) and/or impaired cholesterol
efflux.20,21 Lipid homeostasis in macrophages is regulated by
scavenger receptors, including CD36 and scavenger receptor-
A (SR-A), which mediate uptake and specific ATP-binding
cassette (ABC) family transporters that mediate cholesterol
efflux to apolipoprotein A1 (apoA1) and high-density lipo-
protein (HDL).22–25 Thus, alteration in expression of these
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molecules in macrophages may affect foam cell formation
and progression of atherosclerosis.

Adiponectin, also known as Acrp30, is an adipokine ex-
clusively expressed and secreted by adipocytes that functions
as an insulin sensitizer. Plasma concentrations of adiponectin
are low in type 2 diabetic patients26,27 and mice lacking
adiponectin have hepatic insulin resistance.28 Administration
of adiponectin improves insulin sensitivity in animal models
of type 2 diabetes and insulin resistance.29,30 The precise
molecular mechanism by which adiponectin sensitizes cells to
insulin signals has not been elucidated, however, it appears to
include cross-talk between adiponectin and insulin receptor
(IR) signaling pathways.31 Adiponectin was recently sug-
gested to have an anti-atherogenic effect through regulation
of SR-A and acyl-coenzyme A:cholesterol acyltransferase-1
(ACAT-1) expression in macrophages.32,33

In the current study, we used human peripheral blood
monocyte-derived macrophages to test the effect of insulin
and adiponectin on macrophage expression of scavenger re-
ceptors and ABC transporter sub-family A member 1
(ABCA1) and on oxLDL uptake, cholesterol efflux and foam
cell formation. We found that insulin and adiponectin up-
regulated CD36 expression and downregulated ABCA1 ex-
pression, resulting in enhanced oxLDL uptake, diminished
cholesterol efflux and increased foam cell formation.

MATERIALS AND METHODS
Reagents
LDL prepared from human plasma was oxidatively modified
as previously described using a myeloperoxidase, glucose oxi-
dase, nitrite system.34 Bovine insulin was from Sigma and
recombinant human adiponectin from R&D systems. Poly-
clonal antibody against human CD36 was from Cayman
Chemical. Monoclonal anti-human CD36 IgG, phycoerythrin-
conjugated anti-CD36 IgG and antibodies against SR-A, actin
and a-tubulin were from Santa-Cruz Biotechnology. Anti-
bodies against ABCA-1 and EMR1 (F4/80) were purchased
from Abcam. C14-labeled cholesterol was purchased from
American Radiolabeled Chemicals. ApoA1 protein was pre-
pared as previously described.35 Quantikine Colorimetric
Sandwich ELISA kits for IL-6 and monocyte chemoattractant
protein-1 (MCP-1) were from R&D systems.

Cells
Human monocytes were isolated from peripheral blood by
Ficoll-Hypaque centrifugation and were cultured in RPMI
containing human AB serum (10%) for 7 days to allow for
macrophage differentiation. The differentiation of the
monocytes into macrophages was confirmed by flow cyto-
metry with anti-EMR1(F4/80) antibody. Human peripheral
blood was donated by non-diabetic healthy volunteers. Each
sample was screened and the absence of hepatitis B, hepatitis
C and HIV infection was confirmed.

Immunoblot Analyses
Human macrophages incubated with different concentrations
of insulin (300 pM, 2 nM, 100nM), adiponectin (2mg/ml),
oxLDL (50mg/ml), LY294002 (10mM) or wartmannin
(100 nM) for 16 h were lysed with buffer containing 1% triton
X-100. Lysates were separated by SDS–PAGE, transferred to
PVDF membranes (Millipore) and probed with antibodies
against CD36, ABCA-1, SR-A, actin or a-tubulin. Band in-
tensities were quantified by ImageJ (http://rsbweb.nih.gov/ij/),
Image-Pro Plus software (Media Cybernetics) and Gel-Pro
Analyzer (MediaCybernetics).

Flow Cytometry
Human macrophages plated on serum-coated glass coverslips
were incubated with insulin, adiponectin or oxLDL for 16 h,
then fixed with 4% paraformaldehyde in PBS. Treated mac-
rophages were gently scraped and collected in microtubes and
then stained with PE-conjugated anti-CD36 or anti-SR-A IgG
before measuring fluorescence intensity by flow cytometry
with a Becton-Dickinson FACScan. Data were analyzed by
FlowJo software (Tree Star). To assess oxLDL uptake, oxLDL
was labeled with the fluorescent probe 1,10-dioctadecyl-
3,3,30,30-tetramethylindocarbocyanide perchlorate (diI; Mole-
cular Probes) as previously described.36 Macrophages
pre-incubated as above with insulin or adiponectin for 16 h
were then exposed to diI-oxLDL (10mg/ml) for 20min and
then fixed with 4% paraformaldehyde and analyzed by laser
confocal microscopy. Fluorescence uptake was quantified
using Image-Pro Plus software (Media Cybernetics).

RT-PCR
Total RNA was isolated by Tri reagent from human macro-
phages treated with insulin, adiponectin or oxLDL for 16h
and was converted into cDNA by reverse transcriptase (Roche)
with oligo-dT primer. cDNAs were then used for PCR with the
primers 50-CAG AGG CTG ACA ACT TCA CAG-30, 50-AGG
GTACGG AAC CAA ACT CAA-30 for CD36 or the primers 50-
AAC TCT ACA TCT CCC TT CCC G -30, 50-TGT CCT CAT
ACC AGT TGA GAG AC-30 for ABCA-1. PCR for actin was
used as a reference with the primers 50-GTG GGG CGC CCC
AGG CAC CA-30, 50-CTC CTT AAT GTC ACG CAC GAT
TTC-30. PCR amplification was 22 cycles of 941C for 1min,
561C for 1min, and 721C for 2min for CD36, 28 cycles at the
same temperature for ABCA-1 and 17 cycles for actin.

Cholesterol Efflux Assay
Macrophages plated on 24-well dishes were treated with in-
sulin (2 nM, 100 nM) or adiponectin (2 mg/ml) with or
without wartmannin (100 nM) for 16 h. OxLDL (50 mg/ml)
was incubated with C14-labeled cholesterol (0.2 mCi/ml) at
371C for 30min and then loaded onto the macrophages.
After 6 h, C14-cholesterol-labeled cells were washed with PBS
and incubated with RPMI 1640 medium for 16 h. C14-cho-
lesterol released from the cells into the medium was mea-
sured using scintillation counter. Cellular cholesterol was
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extracted by hexane:isopropanol (3:2 v/v), and C14 radio-
activity in the extract solution was measured by scintillation
counter. Efflux percentage was calculated as C14 radioactivity
in medium/(C14 radioactivity in medium þ C14 radio-
activity in cells) � 100%.

Intracellular Cholesterol Measurement
Human macrophages plated in a 6-well dish were incubated
with insulin (2 nM, 100 nM) or adiponectin (2 mg/ml) with
or without LY294002 (10 mM). The cells were treated with
oxLDL for 16 h and lysed by 0.5% triton X-100 containing
buffer on ice. The lysates were centrifuged at 17 000 g for
30min at 41C and the supernatant was collected for choles-
terol measurement. Cholesterol was measured using Cayman
cholesterol assay kit (Cayman chemical). Briefly, the cell ly-
sates were mixed with assay buffer containing cholesterol
esterase, cholesterol oxidase, HRP and ADHP (10-acetyl-3,7-
dihydroxyphenoxazine). Fluorescent product resorufin that
was generated by the reaction between ADHP and hydrogen
peroxide from cholesterol oxidation could be measured by
fluorescence plate reader using excitation wavelengths of
530–580 nm and emission wavelengths of 585–595 nm. We
also measured total cholesterol and free cholesterol of mac-
rophages by using gas chromatography coupled with mass
spectrometry (GC-MS). Human macrophages were in-
cubated with insulin (2 nM, 100 nM) or adiponectin (2mg/
ml) with or without wartmannin (200 nM) and then
treated with oxLDL (50 mg/ml) for 16 h. These cells were
resuspended with 900 ml water and 100 ml of 1mg/ml
coprosternol in isopropanol and applied to the GC-MS as
described previously.37 We recorded the total ion mass
spectra of trimethylsilyl derivatives, extracted the GC chro-
matograms and calculated cholesterol content in each sam-
ples. The intracellular cholestserol of each sample was
normalized by protein concentration of each sample.

RESULTS
Insulin and Adiponectin Alter Scavenger Receptor
Expression in Human Monocyte-Derived Macrophages
Immunoblots for CD36 showed that insulin at 2 and 100 nM
and adiponectin at 2 mg/ml increased CD36 expression in
macrophages. The adiponectin concentration used was the
one that increased phosphorylation of Akt Ser473 to
the same extent as did 100 nM insulin (data not shown). The
increase in CD36 was prevented by pre-treatment of the
cells with the PI3-kinase inhibitors LY294002 or wartmannin
(Figure 1a). The inhibitors themselves had no effect
(Figure 1a), unlike what was previously reported for murine
macrophages.38 Although the magnitude of effect on CD36
expression induced by insulin or adiponectin varied among
cells from different donors, cumulative data from 15 different
subjects showed a mean increase of twofold (Figure 1b;
Po0.05).

Using flow cytometry we showed that the increase in total
CD36 protein levels induced by insulin or adiponectin were

associated with a significant, dose-dependent increase in
macrophage cell surface CD36 expression (Figure 1c).
Cumulative data from five different subjects showed that 100nM
of insulin and 2mg/ml of adiponectin induced mean increases
of 1.36-fold and 1.47-fold, respectively (Figure 1d; Po0.001).
CD36 mRNA levels measured by RT-PCR did not change after
macrophages were exposed to insulin or adiponectin (Figure 1e),
suggesting that CD36 regulation was post-transcriptional.
OxLDL, known to upregulate CD36,39,40 had additive effect
in CD36 increase when combined with insulin or adiponectin
(Figure 1f).

SR-A, the other major scavenger receptor on macrophages
for modified LDL,41 was also regulated by insulin, but in the
opposite direction to CD36. Immunoblots revealed that insulin
induced a dramatic, dose-dependent decrease in the expression
of SR-A (Figure 2a). Immunofluorescence flow cytometry
showed that insulin downregulated SR-A surface expression
and that adiponectin also downregulated SR-A expression
(Figures 2b and c). Interestingly, oxLDL, which is known to
upregulate CD36,39,40 decreased the expression of SR-A in
human monocyte-derived macrophages (Figures 2a–c) and
had an additive effect when combined with insulin (Figure 2a).

Insulin and Adiponectin Decrease ABCA-1 Expression
in Human Monocyte-Derived Macrophages
Immunoblots for the cholesterol transporter ABCA-1
revealed that insulin and adiponectin decreased ABCA-1
expression in macrophages by up to 80% (Figure 3a). In-
terestingly, PI3-kinase inhibition by LY294002 had no effect
on adiponectin-mediated downregulation and only a partial
effect on insulin (Figure 3a). Insulin and adiponectin also
induced downregulation of ABCA-1 in the presence of
oxLDL (Figure 3b), which by itself has been shown to in-
crease ABCA-1 expression.42 These data suggest that
the regulatory mechanism of insulin and adiponectin on
ABCA-1 expression may be distinct from the liver X receptor/
retinoid X receptor regulatory pathway activated by oxLDL.42

This is further supported by analysis of mRNA levels (Figure
3c), which showed no change in ABCA-1 levels after mac-
rophages were exposed to insulin or adiponectin, in contrast
to the 4.4-fold increase seen after exposure to oxLDL.

Insulin and Adiponectin Enhance oxLDL-Induced Lipid
Accumulation in Human Monocyte-Derived
Macrophages
Having shown that insulin and adiponectin increased
the expression of CD36 and decreased the expression of
ABCA-1 in human macrophages, we next examined their
effect on oxLDL uptake, cholesterol efflux and foam cell
formation. To assess oxLDL uptake, we added diI-labeled
oxLDL to macrophages that had been exposed to insulin
(100 nM) or adiponectin (2 mg/ml) for 16 h and then
measured intracellular fluorescence after 20min using con-
focal microscopy. As shown in Figure 4a, insulin increased
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Figure 1 Insulin and adiponectin increase CD36 expression in human monocyte-derived macrophages. (a) Macrophages were pre-treated with indicated

concentrations of insulin or adiponectin for 16 h and then lysed and assessed by western blot for CD36 expression. In some cases, cells were also treated

with LY294002 (10mM) or wartmannin (100 nM). Blots were stripped and re-probed with anti-tubulin antibody and fold change in CD36 band density was

determined from scanned images. Image is representative of n¼ 15. (b) Means±s.d. of data from 15 different donors normalized as in panel a; *Po0.05. (c)

Flow cytometry histogram of cells treated with insulin or adiponectin and then stained with PE-conjugated anti-CD36 IgG. (d) Mean fluorescence intensity

was assessed by flow cytometry as described in panel c. The bar graph of comparison was generated from experiments using macrophages from five

different subjects; *Po0.001. (e) mRNA isolated from cells treated with insulin or adiponectin was assessed by RT-PCR using specific primers for CD36 and

actin. (f) Macrophages pre-treated with insulin or adiponectin along with or without oxidized LDL (oxLDL) were assessed by western blot for CD36

expression as described in panel a.
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uptake by B80% (Po0.05) whereas adiponectin had no
effect (Figure 4a).

To evaluate the effect of insulin and adiponectin on cho-
lesterol efflux from macrophages, we loaded cells with oxLDL-
containing C14-labeled cholesterol and then measured the rate
of C14 efflux to apoA1 in the culture medium. Pre-treatment
with either insulin or adiponectin decreased the efflux by
B25% (Figure 4b; Po0.05).

We hypothesized that the increased macrophage uptake of
oxLDL and impaired cholesterol efflux induced by insulin or
adiponectin would result in intracellular accumulation of
excessive lipoprotein derived cholesterol and ultimately in

foam cell formation.43 Figure 4c shows that after 16 h of cell
exposure to oxLDL, intracellular cholesterol content mea-
sured by enzymatic cholesterol assay was increased by
threefold in macrophages pre-treated with insulin or adipo-
nectin, compared with untreated cells. Total cholesterol and
free cholesterol of macrophages measured by GC-MS also
showed that free and total intracellular cholesterol of
macrophages were increased by pre-treatment with insulin
or adiponectin (Figures 4d and e).

OxLDL is known to induce secretion of cytokines such as
MCP-1 and IL-6 from mouse macrophages.44 Here we show
that oxLDL also increased the secretion of IL-6 and MCP-1

Figure 2 Insulin and adiponectin decrease expression of scavenger receptor-A (SR-A) in human monocyte-derived macrophages. Macrophages were pre-

treated with insulin, adiponectin, oxidized LDL (oxLDL) or insulin plus oxLDL for 16 h and analyzed by immunoblot (a) or flow cytometry (b) as in Figure 1

using a monoclonal antibody specific for SR-A. Experiments were repeated with macrophages from three different donors, respectively. (c) Mean

fluorescence intensity was assessed by flow cytometry in panel b. The bar graph of comparison was generated from experiments using macrophages from

three different subjects; *Po0.05.
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from human monocyte-derived macrophages (Supplemen-
tary Figure 1), and that neither insulin nor adiponectin
affected baseline or oxLDL-induced cytokine secretion.

DISCUSSION
Hyperinsulinemia was first suggested as a risk factor for
atherosclerosis more than 30 years ago, based on the ob-
servation that insulin levels are higher than normal in pa-
tients with ischemic heart disease.45 Since then, there have
been many clinical and experimental studies revealing that
high levels of insulin precede development of arterial diseases
in diabetic and non-diabetic patients.12–17,46–48 However, the
role of hyperinsulinemia as an independent risk factor for
atherosclerotic coronary disease has been controversial.
Mostly, hyperinsulinemia occurs with insulin resistance in
type 2 diabetes and is regarded as a compensatory mechan-
ism of insulin resistance. Many studies suggest insulin
resistance as a risk factor for atherosclerosis based on its
pathological effects on dyslipidemia, hypertension, and a

hypercoagulable state, which accelerate atherosclerosis.6–11,49

Therefore, it is difficult to determine whether the link
between hyperinsulinemia and atherosclerosis is causative, and
this compels more experimental studies.

Macrophages perform a crucial role in the atherogenic
process by generating lipid laden foam cells.20 Macrophages
are known to express most insulin signaling molecules except
IR substrate 1 (IRS1) and glucose transporter type 4.50,51

Even though insulin activates the IR/IRS2/PI3K/Akt pathway
in macrophages as in other types of insulin-responsive cells,
there have been few studies investigating the biological
functions of insulin signaling in macrophages. In the current
study, we evaluated if insulin affects macrophage foam cell
formation and found that insulin increased the expression of
CD36 and decreased ABCA-1 expression, which may pro-
mote cholesterol accumulation in human monocyte-derived
macrophages. Although the mechanism is not clear, the
insulin-mediated regulatory mechanism of CD36 and ABCA-1
appear to be post-transcriptional based on our results from

Figure 3 Insulin and adiponectin decrease ATP-binding cassette transporter sub-family A member 1 (ABCA-1) expression in human monocyte-derived

macrophages. (a) Macrophages were pre-treated for 16 h with insulin or adiponectin in the presence or absence of LY294002 (10 mM) and then lysed and

analyzed by immunoblot for ABCA-1 expression. Blots were stripped and re-probed with anti-actin antibody and fold change in ABCA-1 band density was

determined from scanned images. Image is representative of three repetitive blots. (b) Cells were exposed to oxidized LDL (oxLDL; 50 mg/ml) with or without

insulin or adiponectin and analyzed as in panel a. (c) RT-PCR for ABCA-1 mRNA of macrophages treated as described in panel b.
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RT-PCR. A recent study showing that insulin increased CD36
expression in Chinese hamster ovary or HEK 293 cells via
regulating CD36 turnover52 supports our observation and
permits a possible expectation that a similar regulatory
pathway may be activated in macrophages. The mechanisms
of insulin regulation of CD36 and ABCA-1 need to be studied

and it appears to be that these proteins are regulated via
different pathways.

Adiponectin is known to enhance insulin sensitivity,
however, the signaling mechanism by which adiponectin sen-
sitizes insulin is not clear. In our study, adiponectin showed
an overlapping signaling with insulin. Low concentration of

Figure 4 Insulin and adiponectin enhance oxidized LDL (oxLDL)-mediated cholesterol loading of human mononcyte-derived macrophages.

(a) Macrophages were pre-treated with insulin (100 nM) or adiponectin (2 mg/ml) for 16 h and then exposed to 1,10-dioctadecyl-3,3,30,30-

tetramethylindocarbocyanide perchlorate (diI)-labeled oxLDL for 20min at 371C. Fluorescence uptake was quantified by digital confocal microscopy using

Imge-Pro software. The graph represents mean±s.d. of five experiments analyzing 50–100 cells each (*Po0.05). (b) Macrophages were pre-treated with

insulin or adiponectin for 16 h and then exposed to oxLDL-containing C14-labeled cholesterol for 6 h. C14-labeled cholesterol effluxed to apolipoprotein A1

(apoA1) was measured by scintillation counting. The graph shows mean±s.d. from separate assays using macrophages from three different donors

(*Po0.05). (c) Macrophages were pre-treated with insulin or adiponectin as above and then exposed to oxLDL (50 mg/ml) for 16 h at 371C. Intracellular

cholesterol was measured by the cholesterol oxidation reaction method. The graph shows mean±s.d. from experiments using macrophages from three

different donors (*Po0.001). Macrophages pre-treated with insulin or adiponectin were exposed to oxLDL (50 mg/ml). Free (d) or total (e) cholesterol was

measured by gas chromatography combined with mass spectrometry (GC-MS).
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adiponectin increased the phosphorylation of Akt (Ser436)
by the same degree as insulin and had the same modulating
effect on CD36 and ABCA-1 as insulin (Figures 1 and 3).
Previous studies showed that adiponectin had an anti-
atherogenic property in apolipoprotein E-deficient mice53

and one of the suggested mechanisms was an inhibitory effect
of adiponectin on SR-A expression and acetylated LDL
(acLDL) uptake.54 In our current study, we reproduced the
previous finding and showed that both insulin and adipo-
nectin decreased SR-A expression in macrophages. However,
the net effect of adiponectin resulted in increased in-
tracellular cholesterol accumulation, which was opposite of
previous reports. In addition to SR-A, adiponectin is known
to downregulate ACAT-1 that catalyzes cholesteryl ester (CE)
formation33 and therefore, adiponectin treatment decreased
acLDL-induced CE accumulation in macrophages.33,55 These
intriguing results may be due to the different sources of
cholesterol for lipid uptake assays, different concentrations of
adiponectin and different modes of adiponectin activities. In
our study using MPO-modified LDL (oxLDL), which is
known to be a specific ligand for CD36,56 adiponectin in-
creased the uptake of oxLDL via increased expression of
CD36, whereas in the previous studies performed with
acLDL, a specific ligand for SR-A,57 adiponectin, decreased
acLDL uptake via a decrease in SR-A. Therefore, the effect of
adiponectin in vivo may be determined by the specificity of
modified LDL for different scavenger receptors.

Changes in the protein levels of CD36 and ABCA-1 in-
duced by insulin and adiponectin appear to be regulated by
PI3-kinase. Our study showed that PI3-kinase inhibitor
prevented the increase of CD36 expression induced by insulin
and adiponectin (Figure 1) while it minimally blocked
the effect of these reagents on the expression of ABCA-1
(Figure 3). The functional effect of PI3-kinase blockade on
the intracellular cholesterol of macrophages was varied
among macrophages from different donors (Figure 4). As
expected, based on the minimal blockade of ABCA-1 de-
crease, the PI-3 kinase inhibitor had no effect on cholesterol
efflux of macrophages (Figure 4b) but partially prevented the
increase of intracellular cholesterol by blocking increased
CD36 expression.

Atherosclerosis and type 2 diabetes share similar patho-
logical mechanisms including elevation in cytokines like
MCP-1 and interleukin-6 (IL-6), which contribute to un-
derlying inflammation of both.58 OxLDL is abundant in both
of these conditions and is known to induce secretion of these
proinflammatory cytokines in macrophages.59 Previous stu-
dies have suggested anti-inflammatory activities of insulin by
showing that insulin infusion to diabetic patients suppressed
mononuclear cell expression of toll-like receptor (TLR)-2
and TLR-4.60 However, another study showed that prolonged
exposure to insulin accentuated tumor necrosis factor-a-in-
duced transcription of proinflammatory genes while short-
term exposure inhibited the transcription.61 In our current
study, insulin and adiponectin, also known to have anti-in-

flammatory activity,62 did not affect oxLDL-induced secre-
tion of MCP-1 and IL-6 in macrophages.

In the current study, we propose evidence that insulin
facilitates macrophage foam cell formation, although this is a
topic of controversy. It is sometimes suggested that hyper-
insulinemia in the presence of insulin resistance may not be
metabolically effective, however, it is possible that one
pathway may remain active when the other pathway is
blocked by insulin resistance. Therefore, more studies are
needed to show how insulin activates different pathways and
may be involved in different biological functions specifically
affected by insulin resistance. The risk of cardiovascular
disease is 10-fold higher than normal in patients with type 1
diabetes.63 Even though type 1 diabetes is characterized by
impaired insulin secretion, it does not rule out the possible
pathological effect of hyperinsulinemia. Indeed, many
patients with type 1 diabetes have hyperinsulinemia from
excessive dose of insulin, resulting insulin resistance.64

Furthermore, hyperinsulinemia appears to drive insulin
resistance.65 Therefore, for the proper management of
patients with type 1 and type 2 diabetes, more investigation
about the role of hyperinsulinemia is required.

In conclusion, we provide evidence that hyperinsulinemia
may promote atherosclerosis by promoting macrophage
foam cell formation in the setting of abundant oxLDL, which
has specific affinity to CD36.

Supplementary Information accompanies the paper on the Laboratory
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