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T
he worldwide prevalence of end-stage
renal disease, the final stage of chronic
kidney disease (CKD), where dialysis
or preferably kidney transplantation is
required, is increasing.1 At the

histological level, renal fibrosis is the final
common outcome of progressive kidney disease,
irrespective of the initial injury. Numerous studies
have shown that the extent of renal fibrosis,
particularly tubulointerstitial fibrosis, is the
strongest determinant of the rate of renal function
loss. The development of novel antifibrotic
treatments is therefore warranted.

Angiotensin II (AngII), one of the main effector
molecules of the renin–angiotensin–aldosterone
system (RAAS), is considered a crucial mediator of
progressive renal injury. This vasoactive peptide
mediates blood pressure via vasoconstriction,
stimulation of aldosterone release, and regulation
of salt and water reabsorption. However, the
detrimental role of AngII in the development of
renal fibrosis extends beyond its hemodynamic
effects. AngII regulates the expression and activity
of proinflammatory and profibrotic pathways,
resulting in deregulation of cellular growth and
proliferation, extracellular matrix accumulation,
epithelial to mesenchymal transformation and
inflammation.2,3

Pharmacological inhibition of AngII by angio-
tensin converting enzyme (ACE) inhibitors and
angiotensin receptor blockers (ARBs) is the most
powerful renoprotective strategy currently avail-
able. However, even optimal RAAS blockade with
ACE inhibitors and ARBs, although beneficial in
terms of proteinuria and blood pressure reduc-
tion, does not translate into full renoprotection.4

Moreover, our group previously demonstrated a
clear dissociation between the effects of RAAS

blockade on glomerulosclerosis and the effects on
interstitial fibrosis.5,6 Novel (adjunct) strategies to
target interstitial fibrosis are required.

Transforming growth factor b (TGF-b) has been
recognized as a key fibrogenic growth factor
mediating progressive renal fibrosis.7 Under
physiological conditions, TGF-b is produced by a
variety of renal cells and secreted in the form of
an inactive precursor.8 Tissue damage activates
TGF-b, functioning in a paracrine/autocrine
manner to activate downstream pathways.
Regulation of TGF-b/Smad signaling is depicted in
Figure 1. In short, binding of TGF-b to its receptors
results in phosphorylation of Smad2 and Smad3,
which form a complex with Smad4, followed by
translocation into the nucleus and regulation of
target gene expression. Dephosphorylation of
p-Smad2/3 by phosphatase PPM1A followed by
dissociation of the Smad complex and subsequent
nuclear export of Smad2/3 leads to termination
of TGF-b signaling.9 Activation of Smad2/3 also
results in upregulation of Smad7, which negatively
regulates Smad2/3, thus providing a negative
feedback loop. Progressive interstitial fibrosis
results in a significant decrease in Smad7 protein10

and overactivity of Smad2/3. Importantly,
activation of Smad3 might lead to amplification of
injury-induced TGF-b through a positive-feedback
auto-inductive loop.11 In addition, AngII may
activate Smad3 also independently of TGF-b
(Figure 1).12 In the context of diabetic kidney
injury, advanced glycation end products may also
induce Smad3 independently of TGF-b.13

Specific inhibition of TGF-b signaling has
been performed in animal models of CKD with
encouraging results, particularly when using drug
targeting to avoid systemic side effects and
increased drug efficacy.14 Although these
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preclinical results may be promising, specific TGF-b
inhibitors are not yet available for clinical
application. Still, Inoue et al report in this issue of
Lab Invest that we might already have what is
needed.15

Vitamin D has long been recognized as an
important regulator of calcium/phosphate meta-
bolism. Over the past two decades it has, however,
become increasingly clear that the vitamin D sys-
tem has important protective effects on the kidney
and cardiovascular system beyond mineral meta-
bolism.16 Most vitamin D is activated in the
kidney, and progression of CKD is strongly
associated with vitamin D deficiency.17 On the
other hand, vitamin D deficiency might contribute
to progression of renal function loss.18 VDR
knockout (VDR� /� ) mice develop more severe
renal damage than their wild- type
counterparts.19,20 Moreover, vitamin D analogs
have demonstrated impressive renoprotective
effects in several animal models of kidney damage,
either when given as monotherapy or in

combination with RAAS blockade.21 Results from
clinical trials are also encouraging,22,23 although
the antifibrotic effects of vitamin D analogs cannot
be easily addressed in humans.

Vitamin D exerts beneficial effects through
attenuation of inflammatory responses, modulation
of profibrotic processes and direct protection of
cells such as podocytes.24 However, the molecular
mechanisms underlying these effects are far less
understood; currently these are believed to include
negative regulation of the RAAS, and inhibition of
the NF-kB and wnt/b-catenin pathways.

The concept of vitamin D as a negative regulator
of the RAAS came from studies on VDR� /� mice
that demonstrated higher renin expression and
angiotensin II production.25 More detailed studies
revealed that active vitamin D suppresses CRE-
mediated transcriptional activity by blocking CREB
binding, thereby disrupting the formation of a
CRE–CREB–CBP/p300 complex, leading to reduc-
tion in prorenin gene expression.26 VDR� /� mice
develop more severe renal injury, most probably
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Figure 1 AngII and TGF-b/Smad pathway in renal fibrosis and inflammation. AngII, abundantly present in conditions of renal

damage, stimulates transcription of the TGF-b gene, either directly or through chemokines such as MCP-1. AngII also

upregulates the expression of TGF-bRII and thrombospondin-1 (TSP-1), which activates TGF-b via proteolytic cleavage of

latency-associated peptide (LAP) and dissociation from latent TGF-b binding proteins (LTBP). Activation of TGF-b receptors

leads to phosphorylation of Smad2/3, which form a complex with Smad4 to regulate the transcription of target genes

including TGF-b itself, and including the negative regulator Smad7. Smad7, in turn, also upregulates the inhibitory unit of

NF-kB (IkBa). Importantly, AngII can activate Smad2/3 directly via the ERK/p38 pathway. On the other side, PPM1A deactivates

the Smads by dephosphorylation, leading to their translocation from the nucleus. As illustrated by the left side of the figure,

AngII may regulate TGF-b/Smad3 signaling at multiple levels. Nevertheless, as is clear from the right side of the figure, TGF-b/
Smad3 signaling does not require AngII but can also be auto-induced. Activation is designated by solid lines and inhibition

by dashed lines.
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due to an overactivated RAAS, induced by
hyperreninemia.19,20 Consequently, treatment with
an AT1 receptor blocker attenuated renal damage to
the same level in both VDR� /� and wild-type
mice.19 Studies with the vitamin D analog
paricalcitol confirmed that the renoprotective
effects of vitamin D are, at least in part, mediated
by suppression of the RAAS.27 Vitamin D analogs
have also important anti-inflammatory properties
through an interaction between the VDR and the
p65 NF-kB subunit, repressing NF-kB-mediated
gene transcription.28 However, as AngII is also
a potent inducer of NF-kB activity, the
anti-inflammatory effects of paricalcitol probably
also partially depend on its ability to downregulate
the RAAS. Finally, in a model of proteinuria-driven
nephropathy, paricalcitol prevented the
development of proteinuria and subsequent renal
interstitial damage through inhibition of the Wnt/
b-catenin pathway.29 Again, the renoprotective
effects observed in this study cannot be easily
dissociated.

Taking all this into consideration, we can pose
several questions. Are there any more pieces of the
puzzle of renoprotection by vitamin D? Are all
renoprotective effects of vitamin D mediated by
the RAAS or are other pathways independently
involved? In this issue of Lab Invest, Inoue et al
report on the antifibrotic effects of the vitamin D
analog maxacalcitol in the rat model of unilateral
ureteral obstruction.15 In their study, treatment
with maxacalcitol attenuated inflammation and
tubulointerstitial fibrosis by inhibition of the
TGF-b pathway. Interestingly, these protective
effects were not accompanied by any effect on
renin expression or angiotensin II production. The
authors went further to explain the mechanism
behind TGF-b downregulation and found that
maxacalcitol blocked auto-induction of TGF-b by
recruiting the PPM1A/VDR complex to Smad3.

What are the implications of these findings?
First of all, to our knowledge, this study is the first
to show a direct antifibrotic effect of a vitamin D
analog through suppression of Smad3 signaling, a
pathway crucially involved in the development of
interstitial fibrosis.11 The lack of effect on the
RAAS suggests that maxacalcitol has different
downstream effects than other vitamin D analogs,
such as paricalcitol. This, in turn, raises the
question if maxacalcitol in combination with a
RAAS blocker would provide even more powerful
renoprotection than either monotherapy, possibly
even beyond the at least additive effects already
observed for paricalcitol.30 A head-to-head
comparison of the renoprotective potential of

different vitamin D analogs under RAAS blockade
may be an important next step towards
optimization of renoprotective therapy. Vitamin D
analogs may become a clinically meaningful
add-on therapy, continuing where RAAS-mediated
renoprotection ends.
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