
Infrared spectral histopathology (SHP):
a novel diagnostic tool for the accurate
classification of lung cancer
Benjamin Bird1,2,*, Milos̆ Miljković1,*, Stan Remiszewski2, Ali Akalin3, Mark Kon4 and Max Diem1,*

We report results of a study utilizing a recently developed tissue diagnostic method, based on label-free spectral
techniques, for the classification of lung cancer histopathological samples from a tissue microarray. The spectral
diagnostic method allows reproducible and objective diagnosis of unstained tissue sections. This is accomplished by
acquiring infrared hyperspectral data sets containing thousands of spectra, each collected from tissue pixels about
6 mm on edge; these pixel spectra contain an encoded snapshot of the entire biochemical composition of the pixel
area. The hyperspectral data sets are subsequently decoded by methods of multivariate analysis, which reveal changes
in the biochemical composition between tissue types, and between various stages and states of disease. In this study,
a detailed comparison between classical and spectral histopathology (SHP) is presented, which suggests SHP can
achieve levels of diagnostic accuracy that is comparable to that of multi-panel immunohistochemistry.
Laboratory Investigation (2012) 92, 1358–1373; doi:10.1038/labinvest.2012.101; published online 2 July 2012

KEYWORDS: artificial neural network analysis; histopathology; immunohistochemistry; lung cancer; spectral histopathology

This paper reports a large-scale study of a new technology to
classify four common forms of lung cancers, and distinguish
them from normal tissues. The new methodology introduced
here utilizes optical measurements on unstained tissue1 for
spectral data acquisition, and does not utilize any im-
munohistochemical or other stains or labels for classification.
As the diagnostic procedure is instrument based and utilizes
trained computer algorithms for classification, this method
offers reproducibility, complete objectivity and improved
accuracy over present methodology.

Optical methods have been used in histology and pathol-
ogy ever since these methods were first described. After all,
staining tissues or cells by hematoxylin/eosin (H&E), fol-
lowed by (visual) microscopic examination is a form of
spectral analysis: different compartments of the cell respond
differently to basophilic and eosinophilic stains and thus,
allow a ‘spectral analysis’ using the eye as a detector. This
method can reveal an amazing amount of information but is
inherently subjective. More recent optical methods have used

image capture at a few selected wavelengths, and computer
analysis of the image planes, for tissue analysis.2 Im-
munohistochemistry (IHC), to date the most advanced op-
tical method to detect the presence of certain cancer
signatures or markers3,4 uses detection of specific antibodies
labeled with easily observable stains.

The new approach reported here is based on the ob-
servation of inherent spectral signatures (as opposed to any
external stains or labels used to treat the sample) of cellular
components to aid classical cytopathology and histopathol-
ogy.5 The paradigm for the spectral approach is that the
transition from normal tissue or cells to diseased states is
accompanied by changes in the overall biochemical compo-
sition of the tissue, along with well-known changes in cellular
morphology and tissue architecture, which are particularly
pronounced in advanced stages of cancer. These changes in
biochemical composition are encoded and observed via
changes in the infrared (IR) spectra. Other label-free spectral
methods have been used to aid classical histopathology, in
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particular for in-vivo applications: fluorescence spectroscopy-
based imaging, for example, has been used for the diagnosis
of hollow organs.6,7 In this method, the different chemical
composition of a few tissue components is exploited. How-
ever, this method lacks fingerprint specificity toward specific
changes in tissue composition, and only few constituents of
human tissue actually exhibit detectable fluorescence.

Over the past two decades, other spectral techniques have
gained attention for medical diagnostic imaging. These
spectral methods are based on vibrational spectroscopy
(either IR absorption or Raman scattering spectroscopy) and
offer the advantage that all (bio)molecules exhibit distinct
spectral signatures, in contrast to the fluorescence-based
methods alluded to above in which only few select molecules
respond to the excitation by light. This paper will deal ex-
clusively with the application of IR absorption spectroscopy
to the field of medical diagnostics.

As all molecules respond to the exciting IR radiation to
produce relatively complicated ‘IR spectra’, the response
observed for an individual dried cell or a tissue section used
in classical histopathology is a complex superposition of all
spectral features of all biomolecules in the sample. Although
IR spectroscopy is usually referred to as a ‘fingerprint’ spec-
troscopic technique, which implies that every molecule known
exhibits a distinct spectrum that identifies it, the super-
position of such fingerprints leads to relatively broad spectral
features that need to be decoded, or de-convolved, to enable
an interpretation or diagnosis. Nevertheless, typical IR spectra
observed for three different tissue types (see Figure 1) allow
a coarse assessment of the biochemical composition: in
Figure 1, the top trace is from the superficial layer of squa-
mous tissue, which is known to accumulate glycogen, and
which can be detected readily by IR spectroscopic methods.8

The spectral features of glycogen consist of a number of sharp
peaks superimposed on protein spectral signatures. The
middle trace of Figure 1 depicts an IR spectrum of connective
tissue, which is dominated by the spectral features of col-
lagen.9 Finally, the bottom trace shows the IR signature of
metabolically highly active cells such as B-lymphocytes, which
exhibit distinct nucleic acid features in addition to the protein
peaks observed in the other traces.10 In general, the spectral
differences between tissue types are much smaller than the
ones shown in Figure 1, and require mathematical procedures
for detection and interpretation. The concepts of these mul-
tivariate methods of analysis will be introduced later. The
combination of IR microspectral data acquisition from a tissue
sample, followed by multivariate data analysis, has been
referred to as spectral histopathology (SHP).

In the results presented here, a commercial tissue micro
array (TMA) containing 80 tissue spots (10 with normal and
70 with cancerous diagnosis) was analyzed by SHP. For each
tissue spot, a consensus medical diagnosis was available from
the array manufacturer, and the TNM (tumor-node-metas-
tasis) classification was known. In addition, the diagnosis
provided by the medical collaborator in this study, who is an

expert pulmonary pathologist, was used to train and verify
the spectral methodology. Using more than one hundred
thousand individual IR spectra extracted from tissue spots,
which were rigorously separated into training and test sets,
artificial neural net (ANN)-based diagnostic algorithms11

were constructed that could distinguish normal from can-
cerous tissue, and classify small cell lung carcinomas
(SCLCs), squamous cell carcinomas (SqCCs) and adeno-
carcinomas/bronchiolo-alveolar carcinomas (ADCs/BACs)
with an average accuracy of 95%. It cannot be over-
emphasized that these results were obtained for a blinded test
set, and that these results exceed the accuracy of routine IHC.

These studies were preceded by earlier work from the
authors’ laboratory on the detection of micrometastases in
lymph nodes,12–14 cervical adeno- and SqCCs,15 and from
other laboratories on the detection of colon cancer,11,16–18

prostate and breast cancer,19,20 brain cancers and brain me-
tastases,21–23 as well as a few other organs.9,24 In addition,
similar efforts using Raman spectroscopy, another form of
vibrational spectroscopy, have yielded analogous results.25–28

These studies mostly were aimed at demonstrating that vi-
brational (IR and Raman) spectroscopy can detect spectral
differences between normal tissue types, and between normal
and diseased tissue. However, the data sets were generally
restricted in size such that rigorous statistical validation was

Figure 1 Examples of mid-IR spectra of different tissue classes. Top:

superficial squamous tissue; middle: fibro-connective tissue; bottom:

B-lymphocyctes. The three spectra are offset along the absorbance (Y)

axis for clarity.
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impossible, or used data analysis procedures that were not
completely objective. The study reported here used patient
numbers that allowed for a rigorous separation of training
and test data sets, and incorporates novel methods of cor-
relating spectral and classical morphological features for the
training data set. The requirement for a large number of
patients in each of the training and test data sets for all
diagnostic classes precluded a finer graduation of disease
(such as papillary, acinar and solid tumor ADCs). Further-
more, inclusion of other disease states, such as certain rarer
lung cancers (eg, large cell lung cancer) and non-neoplastic
conditions, was not practical at this point. Rather, all
non-cancerous tissue types were treated as one class (NOT
cancer), but non-neoplastic diseases (eg, granulomas) are
included in presently ongoing expanded studies, which
involve over 300 patients. The aim of this study was to
demonstrate that SHP can detect different tumor types for
the diagnosis of lung disease, and that the sensitivity and
specificity of this very first attempt rivals that of IHC.

We believe that this technology can aid in the accurate
diagnosis of cancers that are difficult to distinguish on a
morphological basis alone, and whose accurate diagnoses
determine therapeutic options. This report follows similar
studies from the same laboratory in which equivalent methods
for the analysis of exfoliated cells were reported,29–31 using a
methodology referred to as spectral cytopathology (SCP).
SCP proved to be more sensitive than classical cytopathology
in that morphologically normal cells from abnormal (dys-
plastic) samples exhibited spectral changes that could be asso-
ciated with a transition from normal to pre-cancerous states.

Background: SHP for Medical Imaging
SHP16,19,20,32 is a new method to aid pathology with the
diagnostic interpretation of a histopathological specimen. It
offers the advantage that the diagnosis is based on spectral
measurements, which determine a snapshot of the bio-
chemical composition, and is not based on the morphology
of the cells that make up the tissue, or its architecture. In
order to perform SHP, IR absorption spectra are collected
from tens of thousands of individual pixels, which are
6.25 mm on edge in the study reported here. Thus, for a
1mm� 1mm tissue section, 25 600 individual IR spectra are
collected, and stored as a ‘hyperspectral data cube’, a con-
struct that contains the pixel coordinates and the associated
spectrum.1 This hyperspectral data cube contains the spatial
variation of the sample composition, and hereby the sample
diagnosis, encoded in the IR spectra.

IR spectroscopy is a well-established technique that mea-
sures fingerprint signatures (spectra) of all compounds
contained in a sample via their molecular vibrations,33 which
interact with electromagnetic radiation (‘light’) in the IR
region with wavelength between ca 2.5 to 25 mm. This inter-
action results in absorption of light at specific wavelengths,
causing ‘absorption peaks’ (see Figure 1) in the light trans-
mitted or reflected by the sample. Since the mid-1950s,

IR spectra for many biological molecules have been estab-
lished, and spectra specific for proteins, nucleic acids, lipids
and other molecules found in cells and tissue have been
recorded.9 These spectra exhibit exquisite sensitivity toward
subtle differences or changes in molecular structures: for
example, IR spectroscopy can distinguish secondary and
tertiary structural features (for a recent review, see Barth34)
and dynamics in proteins,35,36 structural differences between
DNA shapes (A, B and Z-form DNA),37 the degree of
hydration of these molecules and their interactions with the
solvent,37 and the packing and structures found in phos-
pholipid membranes.38

Since the early years of the previous decade, easy-to-use
and relatively fast instruments have been available to collect
such IR spectra microscopically. This spawned a new research
field, known as IR microspectroscopy or IR microscopy,
which, in turn, enabled researchers to record the IR micro-
spectra of cells and various tissue types. A small tissue section
of 1mm2 may yield thousands of spectra (see above), which
show small spectral changes depending on the chemical
composition of the pixel area from where each spectrum was
collected. Thus, pseudo-color images can be created that
depict these spectral changes in relation to the location from
which the spectra were collected.39 As thousands of pixel
spectra need to be analyzed, and because spectral changes
between pixel spectra may be quite small, this technique
lends itself to analysis by computer. The typical workflow in
SHP thus involves the collection of the IR hyperspectral data
cube from an unstained tissue section, followed by computer
analysis of the data set. Stains, being molecular compounds,
need to be avoided because they exhibit their own spectral
patterns, which would interfere with the spectra of the tissue
sample. However, subsequent to IR data acquisition, the
tissue section may be stained by H&E or immuno-
histochemical agents to allow a detailed comparison between
classical and SHP.

Computer analysis of the spectral hypercube produces a
pseudo-color image based on the spectral information. Such
an image may be obtained completely independently of other
data sets by computing and appropriately color coding the
similarity of the spectra within a data set. This procedure is
called ‘unsupervised’ because the resulting image is based
merely on a spectral correlation, and does not involve the
input of a pathologist. Therefore, these images are valid only
for the data set from which they were collected. Figure 2
shows a photo-micrograph of an H&E-stained lung tissue
section, and the corresponding unsupervised IR pseudo-
color image. The similarity of the structural features obvious
in these images suggests that the spectral information par-
allels the variations in tissue composition visible in the H&E
image. This discriminatory sensitivity of IR spectra toward
different tissue and disease types suggests that it is possible to
construct diagnostic computer algorithms for the analysis of
the IR data sets. Such algorithms are trained by recurring
spectral patterns associated with disease states or tissue types,
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and are subsequently used to classify pixels of IR images
collected from the test set. Such a ‘supervised’ diagnostic
algorithm is based on associating spectral patterns with a
diagnostic annotation obtained from a pathologist. Of
course, this step assumes that the same diagnostic classes
identified by a pathologist produce the same spectral changes
from patient to patient, which has been verified by a number
of research groups. The possibility for achieving SHP-based
diagnostics was first demonstrated in the PhD dissertation
of Lasch.40 Owing to some unexpected experimental diffi-
culties, computational restrictions and the lack of theoretical
foundations at the time, it took another 10 years to refine
experimental and computational methods for wide-spread
applications of SHP in medicine.

MATERIALS AND METHODS
Samples
To demonstrate the ability of SHP to detect and differentiate
different types of lung cancers, a tissue microarray (TMA,
BiomaxUS (Rockville, MD), catalogue number LC811) was
used that contained 80 tissue cores, or spots, each measuring
between 1. 5 and 2.0mm in diameter. For simplicity, the
discussion in the remainder of this section assumes 1.5mm
diameter spots. Although patient information and the TNM
diagnosis were available for this microarray, no immuno-
histochemical information was available, and pathological
diagnoses were strictly based on classical histopathology, carried
out by one of the co-authors. The tissue section was micro-
tomed at BiomaxUS to a thickness of 5mm, and mounted on a
substrate suitable for IR microscopy (see below). A parallel

section was mounted on a standard microscope slide, de-par-
affinized, H&E stained and cover slipped. This slide was imaged
at � 40 magnification via a visual microscope (Olympus,
BX51), resulting in 256 tiles (fields of view), each covering ca
100� 100mm and occupying ca 4MB. These tiles can be stit-
ched together for a � 40 view of the entire tissue spot. This
feature is extremely important for the correlation between
classical and SHP. The use of TMAs for SHP was first reported
by Fernandez, et al.19

For SHP, samples need to be mounted on special substrates
because glass completely absorbs IR radiation. The substrates
used here are so-called ‘low emissivity’ (low-e for short)
slides (Kevley Technologies, Chesterland, OH, USA) that
consist of a normal glass substrate coated with a very thin
silver layer, and a tin oxide overcoating. These slides are
nearly completely transparent to visible light and therefore,
can be used for classical histopathology. However, they are
completely reflective in the IR spectral range, and can be used
in reflection microscopy, as follows: the IR beam passes
through the tissue section, is reflected by the silver layer, and
passes the sample a second time. In both passes, the IR beam
is attenuated by the molecular interactions with the light.
This measurement method has been referred to as trans-
mission-reflection, or ‘transflection’ measurement. Sub-
sequent to IR data acquisition, the section may be stained
and cover slipped for visual histopathology.

IR Data Acquisition
IR hyperspectral data sets were collected for each of the tissue
spots of the TMA using a Perkin Elmer (Shelton, CT, USA)

Figure 2 Panel a: photomicrograph of an H&E-stained 1mm� 1mm lung ADC tissue section at � 10 magnification. Panel b: HCA-based pseudo-color

spectral image of the section shown in panel a. Note that the image shown in panel b is based on spectral similarity only, and does not require

any histopathological diagnostic input. Green areas correlate well with the cancerous regions.
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Fourier transform IR imaging microspectrometer, model
Spectrum One/Spotlight 400, henceforth referred to as the
PE400. This instrument allows data acquisition from visually
selected sample regions of arbitrary size, which is determined
only by the available memory of the instrument computer to
store the data. Spectra for each of the 1.5mm diameter tissue
spots were collected from pixels 6.25mm on edge. Thus, the
raw imaging data set consisted of (1500mm/6.25mm)2

¼ 57 600 individual pixel spectra for each tissue spot, and
correspondingly larger for the larger diameter spots.

The PE400 incorporates a 16 element cryogenically cooled
IR HgCdTe detector array; thus, spectra from 16 pixels were
collected simultaneously. The acquisition of 16 pixel spectra
took about 0.85 s. Subsequently, the sample was moved by
6.25 mm in the focus of the IR beam, and another set of 16
pixel spectra was acquired until the entire sample area was
scanned. For each pixel, four interferograms, collected at
4 cm�1 spectral resolution were co-added, and stored after
Fourier transform as 1626 point intensity vectors with
2 cm�1 data spacing from 750 to 4000 cm�1 in native PE 400
imaging format (.fsm files). Data acquisition, Fourier trans-
form and storage required ca 45min for each tissue spot. The
entire instrument, including the optical path of the micro-
scope, was purged with dry (�401 dew point) air to reduce
atmospheric water vapor interferences.

Data Pre-Processing
Raw data sets were imported into a data manipulation soft-
ware package written in house in the MATLAB (Natick, MA,
USA) environment. The data pre-processing included the
following steps:

� Noise reduction via noise adjusted principal component
analysis (PCA).41

� Spectral quality test to remove spectra from areas not oc-
cupied by tissue (cracks and voids), and from tissue edges.

� Region-of-interest selection (1mm� 1mm), see below.
� Truncation of spectra to include the ‘fingerprint’ region

only (512 data points at 2 cm�1 data spacing between 778
and 1800 cm�1).

� Conversion of spectral vectors to second derivatives.42

� Removal of scattering effects by a phase correction
method.43,44

� Vector normalization of individual spectral vectors.

The pre-processing steps increase the quality of spectra in a
data set by reducing regions of low diagnostic value. Fur-
thermore, selection of a 1mm� 1mm square region within
the 1.5mm diameter tissue spot reduced the number of raw
spectra to a computationally manageable data size for the
ensuing steps (see below) thereby concentrating on areas
which have the most pronounced and diagnostic features.
Decisions on the selection of the 1mm2 region were made
based on inspection of the parallel stained tissue section.
After these pre-processing steps, each data set from one tissue
spot was stored in MATLAB format and subject to pre-

classification by unsupervised (agglomerative) hierarchical
cluster analysis (HCA), which grouped image pixels based on
their spectral similarities.

Pre-Segmentation of Data by HCA
The hyperspectral data sets for each of the tissue spots in the
training set (see below) were subsequently converted to
pseudo-color images by HCA with colors based on the dis-
covered clusters. HCA is a well-known method to extract
patterns in data sets;45 in this particular application, HCA
is used to detect spectral similarities.46 To this end, the
similarity between all pairs of spectra in a 1mm� 1mm
section of each tissue spot was computed by a metric
known as Euclidean distance,45 which results in a similarity
(correlation) coefficient that ranges from 1.0 for perfectly
identical spectra to 0.0 for completely dissimilar spectra.
This is a computationally highly intensive step, because a
1mm� 1mm square region of the tissue containing 25 600
individual spectra requires the computation of 25 6002/2 or
about 300 million similarity coefficients (for each data set).
Subsequently, spectra from each data set are segmented into
clusters according to their similarity coefficients. Each cluster
is associated with a color, and the positions from which a
spectrum was collected are displayed in the color corres-
ponding to the cluster membership. In Figure 2b, all the areas
shown in green are due to similar spectra from areas
diagnosed subsequently as ADC, which show significant and
reproducible differences from the spectra collected from the
regions shown in red. The areas delineated in the HCA map
correspond well with regions visible in the H&E-stained
image. Increasing the number of clusters displayed increases
the detail available from the spectral images; previous results
have indicated that the best agreement with H&E images is
revealed by HCA images containing between 4 and 10 clus-
ters, corresponding to 4 to 10 diagnostic classes. Next, the
high-resolution H&E images and overlays of the HCA images
were used in a step referred to as annotation (see next
section) to associate spectral features contained in a given
cluster with pathological features visible on the H&E images.

Annotation
For the annotation procedure, the tissue spots of the TMA
were separated into training and test sets, as shown in
Table 1. The annotation, that is, the correlation between the
HCA segmentation and the pathological diagnosis, represents
an important step, because the spectra associated with spe-
cific tissue or disease features are subsequently used to train
diagnostic algorithms. The annotation step was carried out
by one of the authors, who is an expert pulmonary pathol-
ogist, using a software package referred to as CirecaAnnotate
(CMAT). CMAT imports the high-resolution visual imaging
data sets along with the 2–15 cluster images from HCA, and
displays H&E and HCA panels side-by-side. Image registra-
tion is performed based on visually selected ‘landmarks’ that
appear on both panels. The selected landmark points usually
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are based on voids or cracks in the tissue, which are readily
identifiable. A minimum of three points must be selected on
both panels, but more points are preferred. Figure 3 shows a
typical screen of the registration result, where a 2-cluster
HCA image is superimposed on the H&E image. Once the
two images are registered, a magnified view is displayed,
shown in Figure 3, right panel. Both images can now be
zoomed without losing registration; furthermore, the num-
ber of clusters in the HCA overlay can be increased/decreased
without losing registration. Once sufficiently good spatial
resolution has been achieved by zooming in on the picture,
the pathologist draws, by cursor action, free-form areas on
the display that unambiguously define a region of homo-
geneous pathological diagnosis, and enters a diagnostic code
for this region. Such regions are shown in Figure 3, right

panel for areas selected as being typical for SCLC (yellow
squares in green areas) and fibro-connective tissue (yellow
free-form shapes in red areas).

Annotation was carried out on the 1mm� 1mm areas for
which HCA images were computed, as shown in Figure 3.
Each region selected by the pathologist may contain between
50 and 200 pixel spectra, and up to 20 regions—albeit of
different diagnostic codes—were typically selected from each
tissue spot. Thus, the annotation procedure for each
1mm� 1mm tissue area will yield between 1000 and 2000
pixel spectra of high homogeneity and well-defined pathol-
ogy. The only condition for this annotation step is that the
region selected lies within one HCA cluster.

This procedure produced an annotated data set that was
based on the pathology input available from the manu-

Table 1 Separation of TMA tissue spots into training and test data sets

Training Test

Normal lung tissue (NOR) H02, H04, H06, H08, H10 H01, H03, H05, H07, H09

Small cell lung carcinoma (SCLC) F01, F03, F05, F09, F10, G01, G03, G06, G09 E08, E09, E10, F02, F04, F06, F08, G02, G07, G10

Squamous cell carcinoma (SqCC) C03, C06, C07, C09, D01, D03 C02, C05, C08, C10, D02, D04

Adenocarcinoma (ADC) A03, A06, A07, A10, B02, B04, B06, B09, C01, E05 A01, A04, A08, A09, B03, B05, B07, B10, D06, E02

Bronchio-alveolar carcinoma (BAC) A02, D05, D09, D10, E3 D07, D08, E01, E04, E06, E07

Figure 3 Screenshots of the CirecaAnnotate software. Left panel: H&E-stained tissue section with overlay of 1mm� 1mm IR map derived by HCA.

Right panel: expanded area of image shown in left panel. This image was used by the pathologist to draw polygons, or freeform shapes, shown in yellow

that select typical regions of a particular disease stage or tissue type. The yellow squares in the green overlay depict areas of SCLC, whereas the

freeform areas in the red overlay depict fibro-connective tissue regions.

Infrared spectral histopathology

B Bird et al

www.laboratoryinvestigation.org | Laboratory Investigation | Volume 92 September 2012 1363

http://www.laboratoryinvestigation.org


facturer of the TMA (BiomaxUS) as well as from the lung
pathologist collaborating in this research project. The tissue
areas selected for annotation are documented, and can be re-
diagnosed if needed. A typical selection of regions used for
annotation is shown in Figure 4. In this figure, the panels
shown of cancerous spots measure 120 mm� 120 mm,
whereas the panels for normal lung tissue measure
240 mm� 240 mm. The number of pixel spectra contained in
each panel is about 380 for the cancerous spots, and about
1440 for the normal lung tissue. The areas in each panel
marked in yellow designate the regions from which training
spectra were extracted. The regions typically encompass an
area between 1

4 to
1
2 of the panels depicted; thus, these regions

define between 200 and 400 spectra to be included in the
annotated data sets.

Post-Processing
The files produced by the CMAT routines were subsequently
processed to extract all selected spectral files at the individual
pixel level, and combine them into training and test data-
bases. These databases were strictly separated by patient, as
shown in Table 1. The total number of annotated pixel
spectra was 106 000; thus, both the training and the test
database contained 53 000 spectra in five classes (normal,
SCLC, SqCC, ADC and BAC), or between ca 6000 and 15 000
spectra in each class of the training and test set. This ensured
that no interdependent data were used in the training and
test sets.

Diagnostic Algorithms
MATLAB-based implementations of feature selection and
diagnostic algorithms were used in this study. Feature selec-
tion refers to a step in which all 512 data points of each
spectral vector are searched for maximally discriminating
features; that is, for the wavelengths at which the spectra
differed maximally for the classes of cancers to be differ-
entiated. The features to be used were determined using the
MATLAB functions rankfeatures, employing t-test based fea-
ture selection.47 Typically, the 60 most significant spectral
features were utilized. The diagnostic classification algo-
rithms (which differentiated individual tissue types on a per-
pixel basis) were based on ANNs, invoked via the MATLAB
function feedforwardnet, using the features selected pre-
viously as activation levels of the input neurons, a single
hidden layer, and two output neurons (because all individual
classifications were binary, forming nodes of a full binary
decision tree). Details of the selected features will be dis-
cussed in more detail in section ‘Analysis of the spectral
features used by the ANNs for classification’.

The tree-based binary classification of all cancer and nor-
mal tissue types followed a scheme suggested by cluster
analysis of the mean annotated spectra. To this end, mean
spectra for 15 tissue classes from the annotation were
calculated, and subject to unsupervised HCA. The results
are represented in the form of a dendrogram,45 shown in

Figure 5. Such dendrograms are frequently used in biology to
study genetic similarities of, for example, bacterial species, or
to express similarity in gene analysis.

These HCA results were used to indicate an order for the
binary classification steps to be carried out. The dendrogram
shown in Figure 5 suggested that all cancerous spectra are
grossly different from the spectra of normal tissue classes, and
from necrotic tissues and tissues containing mucins. How-
ever, it also suggests that the mean spectra of lung ADC and
BACs are very similar, but different from those of squamous
cell and even more different than the spectra from SCLC. It
should be noted that the method used to compute the den-
drogram shown in Figure 5 is identical to that used to con-
struct the HCA image shown in Figure 2, panel (b), which
displays the similarity of spectral features in one entire data
set in the form of a pseudo-color image, except that the
results are displayed differently. Based on the dendrogram
displayed in Figure 5, the binary classification scheme shown
in Figure 6 was developed and followed for the analysis of the
tissue microarray data set.

RESULTS AND DISCUSSION
Two different approaches were used in the diagnosis of the
tissue microarray data set. The first approach dealt strictly
with a scenario where both the training and test data sets
consisted of annotated spectra, whereas the second approach
applied the trained algorithms to entire tissue spots of the
test set, subjecting them to the same binary classification
scheme discussed above. Both types of analysis depend cri-
tically on two factors: the quality and the size of the anno-
tated data set.

In order to define the annotation data set as rigorously as
possible, the tissue spots on the BiomaxUS LC811 lung TMA,
shown in Figure 7, were divided into training and test sets, as
listed in Table 1. A selection of annotated tissue spot areas is
shown in Figure 4; however, the reader is reminded that
many areas were selected from each tissue spots, and that
only a selection of the tissue spots is shown. Annotated
spectra were also collected for the tissue spots in the test set
to allow a diagnostic algorithm on a pixel spectrum basis.
Figures 3 and 4 also demonstrate that each area marked by a
yellow square yielded on average between 100 and 200 pixel
spectra; thus, the total yield of annotated spectra varied be-
tween 1000 and 2000 pixel spectra for each tissue spot. In
total, 106 000 annotated tissue spectra were available for
normal tissues and the four cancer types. This number, and
the number of cancer classes, exceeds the number of spectra
annotated in detail in any previous study on SHP.

The size of the data sets for training and testing is of huge
importance for a study, which tests new methodology for
medical diagnostics. We found that typical diagnostic algo-
rithms require about a thousand spectra of all classes for
reliable prediction of unknown data sets. Furthermore,
we found that the classification into five classes is best
accomplished in a binary hierarchical fashion, as indicated
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Figure 4 Photomicrographs of selected tissue spots used for construction of the data sets. Each panel depicts areas selected (yellow squares) by the

pathologist to indicate typical disease or tissue type. Spectra extracted from the identified areas of the same disease or tissue type from different patients

were combined into the training and test databases.
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in Figure 6. It is possible to train a single ANN for classifi-
cations involving more than two classes; however, it is ad-
vantageous to perform the classification such that the pairs of
classes with the largest differences among them are classified
in order from largest to smallest differences. This is suggested
by inspection of the dendrogram presented in Figure 5, which
indicates that the spectra of cancerous regions, while distin-
guishable, exhibit smaller spectral variances than other tissue
classes. Accordingly, the ANNs were trained to distinguish
the spectral classes in a hierarchical manner.

Owing to the restricted size of the total data sets, two steps
in the classification scheme shown in Figure 6—the classifi-
cation of normal tissue subtypes, and the automatic detection
of necrosis (see below)—could not be carried out. In the case
of normal tissues, there were nine normal diagnostic classes

(stroma with fibroblasts, stroma with abundant lymphocytes,
bronchiole, myxoid stroma, blood vessel wall, alveolar wall,
alveolar septa, mucinous gland and mucin-laden macro-
phages) for which insufficient number of pixel spectra could
be annotated. As the main emphasis of this study was the
distinction of the four non-necrotic cancer types, all the
normal classes were combined into one. The spectra due to
necrosis were removed from the analysis; however, they could
be separated into originating from SqCCs or ADCs, based on
their spectral patterns. The necrotic tissue spectra could be
distinguished from non-necrotic cancer locations because
necrosis induces a significant spectral change that has been
detected and described very early in research efforts to detect
disease by IR spectral methods; see below.48

Classification Results/Pixel Spectrum Based
The first classification scheme used the 106 000 annotated
spectra, which were separated into completely independent
training and test sets; see Table 1. According to the discussion
in the previous paragraph, the top level ANN (ANN level 1,
see Table 2) was trained to distinguish NORMAL from NOT
NORMAL spectra (equivalent to CANCER vs NOT CAN-
CER). To this end, the training set for NORMAL tissue in-
cluded various non-cancerous tissue types, for example,
normal fibro-connective tissue spectra from cancerous tissue
spots, as well as several other normal tissue features (en-
dothelium, connective tissue) from normal tissue spots. The
NOT NORMAL spectra were randomly selected from the
patient-separated tissue spots representing the four cancer
types. A total of 1848 NOT NORMAL spectra and 1840
NORMAL spectra were used in the training set, where the
number of spectra used was determined by the smallest
number of patient spectra in one of the cancer data sets. The
top level ANN distinguished the NORMAL from the NOT

Figure 5 Display of the similarity of mean lung tissue spectra. This dendrogram was constructed by performing HCA on the mean spectra from each of the

15 diagnostic classes assigned by the pathologist. In this dendrogram, the spectral dissimilarity (increasing from right to left) is plotted along the abscissa.

This graph demonstrates the high similarity between ADC and BAC, and the dissimilarity of cancer/necrosis/mucin-rich spectra from connective-tissue rich

spectra.

Figure 6 Binary classification scheme of entire annotated spectral data set

of the lung tissue microarray. This scheme determined the order (hierarchy)

of the ANN analysis. Endpoints of the present classification algorithms are

marked by an asterisk.
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NORMAL spectra with a pixel-level sensitivity of 99.3% and
a specificity of 94.4%, when applied to the entire test set, see
Table 2. This ANN used a feature selection47 of the 65 most
significant (second derivative) intensity points. The neural
network topography (number of hidden layers, nodes in the
hidden layer and the number of input features) affected the

network performance only minimally; the values of sensi-
tivity and specificity changed by o1%. Thus, the reported
results are for ANN structures with one hidden layer that
contained five nodes.

As there were insufficient spectra in the data set to train
an ANN for necrosis, the necrotic spectra were removed
from the data sets. The effect of necrosis on the observed
vibrational spectra was first reported by Jamin, et al;48 in
these spectra, a strong shoulder of the amide I peak at
ca 1630 cm�1 was reported (in fact, this shoulder was
reported to have higher intensity than the ‘main’ amide
I peak at 1655 cm�1). The large spectral changes observed for
necrosis indicate major changes in the protein composition
of necrotic cells, as the 1630 cm�1 peak is associated with
unfolded and precipitated proteins.34,49

The second derivative spectra used in our study displayed
the ‘necrosis signal’ as a sharp, very intense peak at ca
1630 cm�1 in the protein amide I manifold, which was so

Figure 7 Low-resolution image of Biomax LC811 TMA. The letters a–h on the left, and the numbers 1–10 on the bottom define each tissue spot.

Table 2 Sensitivity, specificity and accuracy of hierarchical
ANNs for classification of lung cancers

ANN level Classification Sensitivity Specificity Accuracy

Level 1 ANN NOR vs NOT NORMAL 99.3% 94.4% 96.8%

Level 2 ANN SCLC vs NOT SCLC 91.2% 98.0% 94.6%

Level 3A ANN SqCC vs NOT SqCC (1) 90.4% 95.0% 92.7%

Level 3B ANN SqCC vs NOT SqCC (2) 97.3% 99.6% 98.4%

Level 4 ANN ADC vs BAC 88.8% 47.2% 68.0%
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prominent that it confounded the ANNs. Thus, spectra
exhibiting the ‘necrosis signal’ were removed from the data
set. Subsequently, the pixels in the tissue spots exhibiting the
necrotic spectral patterns were identified as being necrotic by
the pathologist. Furthermore, the spectra in the ‘necrosis’
data subset could be distinguished, by SHP, as originating
from either adeno- or SqCC.

The remaining data set was subject to a second level ANN
(level 2 ANN, see Table 2) to distinguish between SCLC and
NOT SCLC, which includes SqCC, ADC and BAC. To this
end, 5280 spectra from the SCLC training set were selected
randomly. The NOT SCLC training set consisted of 1760
spectra each, selected randomly from the three cancer classes,
SqCC, ADC and BAC. This second level ANN distinguished
SCLC from NOT SCLC spectra from the test set (again at an
individual pixel-level) with a sensitivity of 91.2% and a
specificity of 98.0%. The neural network structure was the
same as discussed above.

A third level ANN (level 3 ANN, see Table 2) in the tree of
binary classification was trained for the distinction of SqCC
from NOT SqCC (ADC and BAC). This distinction is clini-
cally highly significant, because treatment options are quite
different between adeno- and SqCCs.50 Training of this
algorithm was accomplished using 6640 SqCC spectra from
the training set and 6640 NOT SqCC (ADC and BAC) spectra.
For this ANN, two different feature selection methods were
used: the feature selection introduced above resulted in
90.4% sensitivity and 95.0% specificity when applied to the
test set, whereas a feature selection based on PCA scores gave
significantly better results, 97.3% sensitivity and 99.6% spe-
cificity. We attribute this increased sensitivity and specificity
of the PCA scores-based ANN to the fact that PCA scores
contain the entire spectral variance, and the correlation
between different intensity values, whereas a simple feature
selection utilizes the spectral variance at a pre-determined
number of intensity points.

Finally, a fourth level ANN was trained to differentiate
ADC from BAC. As BAC originates in the alveolar lining of
lung tissue, it is considered a precursor of ADC. The
pathological distinction between the two is based mainly on
whether or not the neoplasm has penetrated through the
basement membrane (ADC); if not, the disease is classified as
BAC. From the viewpoint of the biochemical composition of
the cancer cells, the two diseases differ mostly in the stage of
disease; thus, SHP was not able to distinguish these two states
reliably (with an acceptable sensitivity of 88.8%, but a low
specificity of 47.2%). Larger data sets and even more careful
annotation may increase the accuracy of this diagnosis as
well. We note that—once the classifications are made on the
TMA spot level rather than the pixel level (so that individual
pixel scores can be aggregated)—the performance on sensi-
tivity and specificity are expected to improve significantly.

Although the spectral differences among the cancer types
are small, they can be perceived by inspection of the mean
(second derivative) spectra of the different cancer types (see

section ‘Analysis of the spectral features used by the ANNs for
classification’). For example, SCLC spectra, in general, display
stronger DNA/RNA spectral peaks than the other cancerous
types. At this point, it is possible to qualitatively interpret
some of the spectral differences between the cancer classes in
terms of biochemical changes within the tissue, similar to the
approach taken in the past51 for SCP. There, the distinction
between cancerous oral mucosal cells from normal ones
differed by the spectral signature of keratin, among other
changes, in the case of keratinizing SqCC.

The discussion in the next two sections concentrates on the
classification of four cancer types, and ‘normal’ (ie, NOT
cancerous) tissues only, and does not include a discussion of
future possibilities of detecting individual cancer markers by
spectral means. However, there are preliminary data from
another laboratory that suggest that data mining techniques
of IR imaging data sets against IHC can reveal the presence of
certain marker proteins. This could, in the future, lead to
label-free methods of detecting markers of disease, and
prognostic information.

Classification Results/Tissue Spot Based
To test how well the diagnostic algorithms discussed in the
previous section performed on test spectra that were not
annotated at the pixel level, entire tissue spots from the test
set were subjected to ANN analysis. This was accomplished as
follows. The raw data set from entire spots, consisting of ca
57 600 pixel spectra each, were preprocessed as discussed
above (section ‘Data pre-processing’). However, rather than
pre-segmenting the data set by HCA, as was done for the
annotation and pixel-based diagnostic tests, all pixel spectra
of each spot were analyzed directly by the trained ANNs, and
the pixel-level output of the ANN was converted to a
graphical binary format. Thus, in this format, each pixel
spectrum analyzed by the various level ANN’s can have a
binary output, ‘YES’ coded in red, or ‘NO’, coded in green.
Depending on the ANN, the red and green areas can have
different diagnostic meanings, as shown in Figure 8.

When the ‘Level 1 ANN’ algorithm (CANCER vs NOT
CANCER) was applied to tissue spot H9 form the ‘normal’
tissue spot test set (top row of Figure 8), the green areas
imply ‘NO’ or NOT CANCER, which is the correct diagnosis
for this normal tissue spot. When the same Level 1 ANN was
applied to spot E8 from the SCLC test database (Figure 8,
second row), the answer was ‘YES’, or positive for cancer.
When the same spot was analyzed by the level 2 ANN, SCLC
vs NOT SCLC, the results again was YES (positive for SCLC)
as indicated by the red display.

The third row depicts applications of the level 1 ANN, level
2 ANN and level 3 ANN (left to right) to tissue spot D2
diagnosed as SqCC by classical methods. Application of the
level 1 ANN reported the fibro-connective tissue areas as
‘NO’ (NOT CANCER) in green, and the cancerous regions in
red. The level 2 ANN subsequently analyzed the CANCER
areas, but determined that they were NOT SCLC, hence they
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were displayed in green. Level 3 ANN analyzed the cancerous
regions, and found them to be positive (red) for SqCC.

The fourth row in Figure 8 depicts analysis of tissue spot
A1, which was diagnosed as ADC by classical methods. The

level 1 ANN properly defined most areas as cancerous (red)
with just a few normal regions. Application of the level 2
ANN and the level 3 ANN both revealed negative results
(green) when analyzing the cancerous regions, because the

Figure 8 Examples of results from full tissue spot based analyses (see text for details). Top row (a): analysis of normal tissue spot H9 by level 1 ANN

(cancer vs NOT cancer, see Table 2), which properly assigned the vast majority of spectra as normal. Second row (b): analysis of SCLC spot E8 by level 1

ANN, which correctly assigned the vast majority of spectra as cancer. (c) Analysis of same spot by level 2 ANN (SCLC vs NOT SCLC, see Table 2), which

correctly assigned the vast majority of spectra as SCLC. Third row (d): analysis of SqCC spot D2 by level 1 ANN, which correctly classified regions of SqCC

and fibro-connective tissue. (e) Analysis of same spot by level 2 ANN, which depicted fibro-connective tissue in black, and cancerous regions in green

(because they were NOT SCLC). (f) Analysis of same spot by level 3 ANN (SqCC vs NOT SqCC, see Table 2), which correctly assigned the vast majority of

spectra as SqCC. Fourth row (g): analysis of ADC spot A1 by level 1 ANN, which correctly classified regions of cancer (red), and a few areas of NOT

cancer. (h) Analysis of same spot by level 2 ANN, which depicted all cancerous regions as NOT SCLC (green), whereas the non-cancerous regions appeared in

black. (i) Analysis of same spot by level 3 ANN, which depicted all cancerous regions as NOT SqCC (green), whereas the non-cancerous regions appeared

in black. (j) Analysis of same spot by level 4 ANN (ADC vs BAC, see Table 2), which depicted all cancerous regions as ADC (red). Fifth row (k): analysis

of BAC spot E7 by level 1 ANN, which correctly classified regions of cancer (red), and areas of NOT cancer in green. (l) Analysis of same spot by

level 2 ANN that depicted fibro-connective tissue in black, and cancerous regions in green (because they were NOT SCLC). (m) Analysis of same spot

by level 3 ANN that depicted all cancerous regions as NOT SqCC (green), whereas the non-cancerous regions appeared in black. (n) Analysis of same spot

by level 4 ANN that depicted all cancerous regions as NOT ADC (green).
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cancer was NOT SCLC and NOT SqCC. However, level 4
ANN recognized the cancer as ADC. Notice that the areas
shown in green in the leftmost picture of row 4 appear blank
in the output of the level 4 ANN, because the algorithm
properly detects them as ‘NOT ADC’.

Finally, in row 5 of Figure 8, results are shown for spot E7
diagnosed as BAC by classical histopathology. The majority
of the spot was identified as cancerous except a region of
blood vessel with red blood cells within its lumen in the
upper left quadrant that were clearly diagnosed as normal by
‘level 1 ANN’. Level 2 ANN, level 3 ANN and level 4 ANN
found ‘NOT SCLC’, ‘NOT SqCC’ and ‘NOT ADC’, respec-
tively, which were the correct diagnoses for a tissue spot di-
agnosed with BAC.

In summary, Figure 8 demonstrates that a decision tree of
hierarchical, binary ANNs can be used to analyze for the
presence of various cancers. The consecutive applications of
these algorithm requires o1min once the training of the
algorithms is accomplished.

Analysis of the Spectral Features Used by the ANNs for
Classification
At this point, it is instructive to investigate the spectral fea-
tures used by the individual neural networks for the classifi-
cation of the cancer types. This analysis can be presented in

the form of a ‘heat map’. Heat maps are commonly used in
IHC or gene array studies to visually demonstrate that mar-
kers or features are responsible for a classification decision.
Figure 9 shows a heat map of the spectral features used by
each of the four ANNs, along with the mean class spectra. The
details of this figure will be discussed next.

The binary neural networks were trained on data sets
containing large numbers (thousands) of spectra, see section
‘Classification results/pixel spectrum based’. T-test-based
feature selection was carried out, as discussed above, to select
the spectral features that created the best discrimination of
spectra in this binary, two-class approach. The top pair of
traces in Figure 9, marked ‘a’, shows the mean spectra of the
cancer (red) and NOT cancer spectral classes (blue). Note
that all normal tissue classes described in Figure 5 were
contained in this latter data set. Similarly, all cancers (SCLC,
SqCC, ADC and BAC) were contained in the former set.
Visual inspection of this pair of spectral traces reveals sys-
tematic differences between the two classes. The importance
of these spectral differences is emphasized in the ‘Cancer vs
NOT cancer’ heat map display, marked ‘a’. In this trace, dark
blue hues indicates no significance, whereas red and reddish
brown colors indicate high significance (see color scale in
Figure 9). This heat map demonstrates that the algorithm did
not utilize all wavenumber ranges where different spectral

Figure 9 Comparison of mean second derivative spectral features (top, traces a–d) and heat map of features selected by the ANNs for the binary

discrimination (panels A–D) of tumor classes. See text for details.
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features can be observed, but selected ranges of most sig-
nificance for the desired discrimination. On the other hand,
it is important to ascertain that regions of high significance,
indicated in the heat map actually exhibit spectral intensities
or intensity differences between the two classes. Combina-
tions of individual features selected by the algorithm may be
viewed as ‘spectral marker sets’ for a specific condition or
disease.

The differentiation of the SCLC and NOT SCLC (SqCC,
ADC and BAC) classes occurred in the low wavenumber
region of the spectra (900–1500 cm�1, see trace pair ‘b’). This
result agrees well with results from visual inspection of SCLC
spectra, which always exhibit distinct DNA-associated peaks
at ca. 1235, 1090, 1065 and 965 cm�1.9 These regions are
indicated in the heat map ‘B’ as most significant in distin-
guishing SCLC from the other cancers. The distinction
between SqCC and NOT SqCC (ADC and BAC) uses spectral
features spread over the entire spectral range, as shown in C.
The spectral differences found in the 1000–1250 and 1580–
1620 cm�1 regions, shown in trace pair ‘c’, are most likely
associated with glycoproteins. ADC and BAC originate in
mucus-producing alveolar cells, in contrast to SqCC. Mucus,
a glycosylated protein, exhibits spectroscopic features of the
carbohydrates between 1000 and 1250 cm�1,52 and generally
slightly different protein conformational features, which
show up in the region between the amide I and amide II
manifolds.

Similarly, the features differentiating ADC and BAC are
spread over the entire spectral range, however, the mean
spectra shown in traces marked ‘d’ are very similar. This is in
line with the histopathological view that BAC (also known as
Tis, in situ) represents an early stage of ADC where the
cancerous cells are confined to the top layer of alveolar tissue.
As these tissues—and consequently, their spectra—are so
similar, the algorithm had to rely on a number of small
features for the differentiation of these classes.

It should be pointed out that the heat map diagram shown
in Figure 9a–d are the output of the t-test-based feature se-
lection algorithms, not the actual weights assigned to each of
the features by the ANN. These latter weights can be dis-
played, but are complicated by the fact that the hidden layer
in the ANN consists of several individual nodes, and the
weights triggering each node need to be displayed. Thus, the
output of these weights produces a less intuitive display than
the feature selection plots shown here. Nevertheless, the heat
plots in Figure 9 provide information on the selection of
distinguishing markers that can be interpreted on the basis of
biochemical composition.

Conclusions
This study demonstrates that SHP can classify tissues that
present different cancer types, with overall accuracies
comparable to that of multi-panel IHC. This is one of the
largest scale SHP studies to date, employing an annotated
data set totaling over 100 000 spectra, with an overall data set

comprising over 3 million tissue spectra from over 70 pa-
tients. In this study, the locations from which training and
test spectra were collected are documented, and the diagnoses
of these spectra are verified by classical histopathology. The
experimental methods utilized in this study represent the
most automated procedures for data acquisition and pre-
processing. The pre-processing steps, in particular, are based
on most recent research and understanding of confounding
effects in IR micro-spectroscopy,53,54 and use procedures
(such as segmenting of second derivative data by HCA, and
subsequent analysis by ANN) that have been shown by sev-
eral research groups11,49,55,56 to produce the most reliable
data and most reproducible diagnostic algorithms. In addi-
tion, the software and procedure developed during this study
for pathology-based annotation are novel, and allow a more
reliable and reproducible classification of the training spectra.

In this pilot study, we demonstrated the diagnostic value of
SHP in classifying various cancerous and normal states in
lung histopathology. Once sufficiently large training sets for a
particular organ have been established, and machine learning
algorithms have been trained, the SHP methodology can
easily be incorporated into standard pathology workflow,
because it requires nothing but an unstained tissue section to
be cut when the samples for classical pathology and IHC are
prepared. This slide can be analyzed whereas the standard
slides are stained and cover slipped, and the SHP results can
be available, for example as an overlay with a standard H&E-
stained image as shown in Figure 2 or 3, to direct a pathol-
ogist toward areas of high interest or to remove areas of low
or unambiguous diagnostic value. Furthermore, recent re-
sults have indicated that the signatures related to individual
cancer markers57 and disease progression and prognosis58 can
be derived by vibrational spectroscopic means, thereby add-
ing prognostic and therapeutic value. This, in turn, can lead
to a platform that combines diagnosis, prognosis and ther-
apeutic information in one comprehensive laboratory pro-
cedure. Furthermore, SHP has a distinct advantage over IHC:
in the latter technique, only the markers, which are pre-
selected and included in the test panel can produce a signal;
that is, it is impossible to detect any unselected markers.
However, the spectral signatures of such markers will be in-
cluded in the IR spectral information.
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