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This study aims to develop a new FT–IR spectral imaging of tumoral tissue permitting a better characterization
of tumor heterogeneity and tumor/surrounding tissue interface. Infrared (IR) data were acquired on 13 biopsies
of paraffin-embedded human skin carcinomas. Our approach relies on an innovative fuzzy C-means (FCM)-based
clustering algorithm, allowing the automatic and simultaneous estimation of the optimal FCM parameters (number of
clusters K and fuzziness index m). FCM seems more suitable than classical ‘hard’ clusterings, as it permits the assignment
of each IR spectrum to every cluster with a specific membership value. This characteristic allows differentiating
the nuances in the assignment of pixels, particularly those corresponding to tumoral tissue and those located at
the tumor/peritumoral tissue interface. FCM images permit to highlight a marked heterogeneity within the tumor
and characterize the interconnection between tissular structures. For the infiltrative tumors, a progressive gradient
in the membership values of the pixels of the invasive front was also revealed.
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Fourier transform mid-infrared (FT–IR) microspectroscopy
is a label-free optical method based on the interaction between an
IR radiation and matter. This vibrational spectroscopy permits to
probe the biochemical composition of a sample. Coupled with an
imaging system, FT–IR microspectroscopy of human tissues can
be used as a very sensitive, non-destructive and non-subjective
tool for the detection and localization of tumoral nests. Thus,
FT–IR microimaging has demonstrated potential to provide
clinically relevant diagnostic information in oncology.1–15

The biochemical changes related to carcinogenesis between
cancerous and surrounding tissue areas are subtle. As a
consequence, IR hyperspectral images need to be processed
by powerful digital signal processing and pattern recogni-
tion methods in order to highlight these changes. To date,
unsupervised ‘hard’ clustering techniques including K-means
(KM)3,16–20 or agglomerative hierarchical (AH)11,16,21–23

clustering have been usually applied to create color-coded
images allowing to localize tumoral tissue surrounded by
other tissue structures (normal, inflammatory, fibrotic).

The particularity of ‘hard’ clustering methods is that each
pixel is assigned to only one cluster. Consequently, they
neither allow to consider the progressive transition between
non-cancerous tissues and cancer lesions nor to reveal every
nuance of intratumoral heterogeneity.2

To overcome this drawback, fuzzy clustering methods such
as fuzzy C-means (FCM) can be used instead of ‘hard’
clustering algorithms.24 Indeed, FCM allows each pixel to
be assigned to every cluster with an associated membership
value varying between 0 (no class membership) and 1 (highest
degree of cluster membership). FCM has been successfully
used in near-IR spectroscopy to distinguish different types
of inks in synthesized samples25 and in mid-IR spectroscopy
to characterize adhesive/dentin interface in caries-affected
teeth,26 and to analyze different types of tumor tissues.16,27

However, as it is the case for ‘hard’ KM clustering, the
number of clusters K must be defined a priori by the
user. The FCM results are thus dependent from the operator
experience. In addition, FCM outcomes are dependent on
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another important parameter, called the fuzziness index m in
the fuzzy logic literature. When m¼ 1, FCM becomes iden-
tical to KM and when m increases, the clustering becomes
fuzzier. When m tends to infinity, each pixel tends to have its
membership values uniformly distributed to all the clusters.24

In IR data processing, this can create redundant cluster
images, in which only some pixels differ from one cluster to
another. However, the fuzziness index is classically fixed to 2
in the literature.24,25,27 The choice of an efficient trade-off
between K and m, necessary to fully exploit the information
content of IR hyperspectral images, is still an open problem.
Indeed, as recently shown for colorectal adenocarcinoma,16

when the (K, m) couple is not optimized, FCM clustering
proved to be less efficient than AH clustering in terms of
tissue histopathological recognition.

In this article, an algorithm dedicated to IR spectral images
of tumoral tissues is developed in order to automatically
estimate the optimal values of K, the number of non-
redundant FCM clusters, and m, the fuzziness index, without
any a priori knowledge of the data set. This innovative
algorithm is based on the redundancy between FCM clusters.
Results obtained from human skin cancer-tissue sections
indicate that this algorithm is particularly well adapted to
localize tumoral areas and to highlight transition areas
between tumor and surrounding tissue structures. These
transition areas are of crucial importance in the promotion of
tumor progression, malignant cell escape and consequently
metastasis formation.

MATERIALS AND METHODS
Sample Preparation
The developed algorithm was applied on the IR spectral
images acquired on 13 biopsies of formalin-fixed paraffin-
embedded human skin carcinomas, squamous cell carcino-
mas (SCC, n¼ 3), basal cell carcinomas (BCC, n¼ 4) and
Bowen’s diseases (n¼ 6). The samples were selected by the
pathologists from the tumor bank of the Pathology Depart-
ment of the University Hospital of Reims (France). From
samples 10-micron thick slices were cut and mounted,
without any particular preparation, especially no chemical
dewaxing, on a calcium fluoride (CaF2) (Crystran, Dorset,
UK) window for FT–IR imaging. First adjacent slices (5-mm
thick) to those used for FT–IR analysis were stained with
hematoxylin and eosin (H&E) for conventional histology,
except for the infiltrative SCC #1, for which H&E-stained
tissue section is not immediately adjacent to the analyzed
section, but localized at circa 25 mm. From these slices, the
cancer outlines defined by the pathologists were drawn on
the photomicrographs.

FT–IR Data Set Acquisition
FT–IR hyperspectral images were recorded with a Spectrum
Spotlight 300 FT–IR imaging system coupled to a Spectrum
one FT–IR spectrometer (Perkin Elmer Life Sciences, France),
with a spatial resolution of 6.25 mm and a spectral resolution

of 4 cm�1. The device is equipped with a nitrogen-cooled
mercury cadmium telluride 16-pixel-line detector for ima-
ging. Spectral images, also called data sets, were collected
using 16 accumulations. Before each acquisition, a reference
spectrum of the atmospheric environment and the CaF2
window was recorded with 240 accumulations. This reference
spectrum was subsequently subtracted from each data set
automatically by a built-in function from the Perkin Elmer
Spotlight software. Each spectral image, covering a sub-
stantial part of the biopsy, consisted of about 30 000 spectra.
Each image pixel represents an IR spectrum, which is the
absorbance of one measurement point (6.25� 6.25 mm2) over
451 wavenumbers uniformly distributed between 900 and
1800 cm�1. This spectral range, characterized as the finger-
print region, actually corresponds to the most informative
region for biological samples.

Data Set Preprocessing
The samples being analyzed without previous chemical de-
waxing, the recorded FT–IR hyperspectral image must be
digitally corrected for paraffin spectral contribution. To this
end, an automated processing method based on extended
multiplicative signal correction (EMSC) was applied on each
recorded data set.3 Briefly, the mean spectrum was computed
by averaging all recorded spectra of each data set. Light-
scattering effects were modeled with a fourth-order poly-
nomial function. The interference matrix was composed of
the average spectrum of paraffin and the first nine principal
components extracted from a FT–IR spectral image recorded
on a pure paraffin block, in order to take into account the
spectral variability of paraffin. After the application of the
EMSC-based preprocessing, paraffin contribution is neutralized,
which permits to retain in the data sets only the spectral varia-
bility of the tissue and to normalize the corrected spectra around
the mean spectrum.3 Two IR spectra before and after EMSC-
based preprocessing are shown in Supplementary Figure S1,
available in the supplementary information document.

In addition, this preprocessing permits to discard from the
analysis outliers and poor tissue signal to noise ratio spectra.3

The corresponding pixels are white colored on the clustering
color-coded images for better visualization.

Clustering Methods
The spectral differences between different skin structures
(such as dermis, epidermis and tumor) are weak after the
EMSC-based preprocessing step. To highlight the different
biological structures of the analyzed sample, clustering
methods can be used. The main objective of clustering is to
group together similar spectra in order to reveal areas of
interest within tissue sections. In IR spectral imaging of
cancerous tissues, clustering methods allow to create highly
contrasted color-coded images permitting to localize tumoral
areas within a complex tissue.3,16 For cluster assignment, each
color-coded map was then provided to the pathologists for a
comparison with the corresponding H&E-stained sections.
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‘Hard’ Clustering
KM clustering is the most popular non-hierarchical partition
clustering method because of simple algorithm and fast
execution speed. The aim of KM is to divide the spectra into a
partition composed of K clusters that minimizes an objective
function based on a distance measure between each spectrum
and the nearest cluster centroid.28 Its major drawback is that
the results depend on a random initialization, and the number
of clusters must be fixed in advance by the user. In this study,
KM clustering was performed several times (n410) to make
sure a stable solution was reached, and to overcome the ran-
dom initialization dependence. In this study, KM was applied
using the Matlab Statistics Toolbox with the classical Euclidean
distance. The process continued until no spectrum was reas-
signed from one iteration to the following, otherwise it was
stopped after 104 iterations.

AH clustering is a hierarchical partition clustering, in
which each object (spectrum in our case) is one cluster at
the beginning of the algorithm. At each iteration step, AH
regroups the two clusters that are the most similar into a
new cluster. The algorithm is stopped when the all spectra
are combined into one single cluster.29 For n spectra, the
number of iterations equals to n–1. AH clustering process is
independent of initialization. However, like for KM, in AH
clustering, the number of clusters K is empirically chosen.
Compared with KM, AH clustering is significantly more
time and resource consuming. To reduce the computational
time of AH clustering on our large data set, we used here
an efficient hybrid hierarchical agglomerative clustering
(HHAC) technique that combines KM and AH clusterings
using Euclidean distance and Ward’s algorithm.30 KM is first
applied to reduce the data sets to 1000 cluster centers. AH is
then carried out on these 1000 KM centroids.

In addition, a common characteristic feature of ‘hard’ KM
and AH clusterings methods is that each spectrum belongs to
an unique cluster. This feature becomes a limitation in case of
tissular IR spectra, probing the multichemical composition of
the tissue at the microscopic scale.

FCM Clustering
FCM clustering is based on the minimization of the sum of
weighted distance measures between each spectrum and each
centroid. The weight is controlled by the fuzziness index m.
Therefore, contrary to ‘hard’ clustering, FCM permits to affect
each pixel (spectrum) to every cluster with an associated member-
ship value varying between 0 and 1; the sum of the K cluster
membership values for one pixel being equal to 1.24

In this study, we applied the FCM function from the
Matlab Statistics Toolbox with the Euclidean distance. A
maximum number of 500 iterations and a setting of 10�5 for
the minimal amount of improvement of the objective func-
tion between two consecutive iterations were used as the
stopping criteria.

However, FCM requires to fix the number of clusters K
and the fuzziness index m. An inappropriate choice of these

parameters could lead to an uninterpretable clustering of the
data. The development of an automatic method to optimally
estimate these parameters is thus essential.

Development of the Redundancy-Based Algorithm for
the Optimal Estimation of FCM Parameters
The redundancy-based algorithm (RBA) is an innovative
algorithm proposed to automatically estimate the optimal
couple (Kopt, mopt) of the FCM. It is based on the FCM
clusters redundancy measured in this paper for two clusters i
and j by the intercorrelation coefficient Rij:

RijðK; mÞ ¼ Cði; jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cði; iÞCðj; jÞ

p

where C(i, j) is the covariance between the membership va-
lues of clusters i and j, and C(i, i) (respectively C(j, j)) is the
variance of the membership values of cluster i (respectively
cluster j).

The RBA is composed of three steps. The first one can be
mainly divided into three imbricated loops, and performs an
iterative process of cluster-number reduction. For this step, N
different values of the fuzziness index m uniformly dis-
tributed around the classical value m¼ 2 are considered and
form the set m¼ {m1,y, mn,y, mN}. In the same manner,
L different values of the correlation coefficient threshold s
uniformly distributed into the high correlation coefficients
range 50 to 95% compose the set s ¼ s1; . . . ; sl; . . . ; sLf g.
Furthermore, a parameter of this algorithm is the maxi-
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K = K – 1
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s = sl

m = m1
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Figure 1 Flowchart of the redundancy-based algorithm (RBA). This

flowchart permits to construct the curves of the number of non-redundant

clusters Knr
s (m) as a function of m for different values of the threshold s.
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mum number of considered clusters noted Kmax and fixed
by the user.

The RBA begins by initializing m to m1, s to s1 and K to
Kmax. Thereafter the most internal loop can start. FCM are
run with the fuzziness index equal to m and a number of
clusters equal to K. Once the FCM algorithm has converged,
if one of the computed Rij values is superior to the threshold
equal to s, it means that two clusters are redundant. One of
them is thus useless. FCM are thus run again with the same
m, but with a number of clusters equal to the previous value
minus 1. On the contrary, if all the computed Rij values are
inferior to s, it means that no clusters are redundant. All the
estimated cluster carrying different information, this first
loop can hence be stopped. The current value of the number

of clusters K is saved as the number of non-redundant
clusters noted Knr

s (m) (note that for the first loop, s¼ s1 and
m¼m1, and for the following iterations s¼ sl and m¼mn).

The middle loop of the algorithm is a repetition of the
most internal one for the different values of m among the set
m. To gain computation time, the most internal loop should
begin for the next value of m with an initial number of
clusters K equal to the number of non-redundant clusters
estimated for the previous value of m. However, the FCM
algorithm being randomly initialized, the estimated number
of non-redundant clusters can vary from one clustering to
another. To take into account this possible variation, the
initial value of K for the next m is set to the number of
non-redundant clusters for the previous m plus two. Note

Figure 2 ‘Hard’ clustering color-coded images on the Fourier transform mid-infrared (FT–IR) data set of an infiltrative human skin squamous cell carcinoma

(SCC) sample #1. (a) Direct hematoxylin and eosin (H&E) staining of the thick (10 mm) section examined by infrared (IR) imaging; tumor is outlined.

(b) K-means (KM) color-coded image. (c, d) Hybrid hierarchical agglomerative clustering (HHAC) color-coded image and its corresponding dendrogram.

Each color corresponds to one cluster. (e) H&E staining of a thin section (5 mm) localized at circa 25 mm from that analyzed by IR imaging.
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Figure 3 Fuzzy C-means (FCM) images with unoptimized parameters (K¼ 11 and m¼ 2) on the Fourier transform mid-infrared (FT–IR) dataset of the human

skin squamous cell carcinoma (SCC) sample #1, and the corresponding hematoxylin and eosin (H&E)-stained section. Clusters 1 and 4 are redundant clusters

of the epidermis, whereas cluster 3 is non-redundant. For the dermis, clusters 2, 5 and 11 are redundant, as for clusters 7 and 9. Clusters 6, 8

and 10 are dissociated clusters describing the tumor. The color bar represents the membership value for each pixel. In the corresponding H&E-stained

section, tumor is outlined.
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that the threshold s keeps its value in this loop. By per-
forming this procedure for the different values of m, a curve
Knr
s (m) of the number of non-redundant clusters Knr

s (m) is
obtained as a function of m with a threshold equals to s.

The last loop (the most external one) is a repetition of the
first two ones for the different values of s among the set s. At
the beginning of each iteration of this loop, the number of
clusters K is initialized to Kmax and m to m1. At the end of the
algorithm, the L resulting Knr

s (m) curves are obtained for
each threshold value s. The complete flowchart of this global
procedure is shown in Figure 1.

The second step of the RBA consists in the optimal
estimation of FCM parameters from the obtained curves
Knr
s (m). As it will be presented in the Results and discussion

section, each curve decreases rapidly and becomes stable
at a K̂opt

s value that can be different from one threshold
to another.

However, in practice, whatever the threshold s, we usually
observe that the breakings in these curves appear for close
and often for the same number of clusters. A majority voting
algorithm can thus be used to identify the final optimal
value K̂opt of the number of clusters. The optimal value
m̂opt of the fuzziness index is then computed as the average
of values m̂opt

s for which the curves Knr
s (m) have presented a

break at K̂opt
s .

Hereafter in the manuscript, FCM clustering carried out
with these RBA-optimized parameters will be defined as
FCM–RBA.

RESULTS AND DISCUSSION
The FCM–RBA clustering was assessed on EMSC-pre-
processed FT–IR hyperspectral images acquired on thin tissue
sections of 13 human skin carcinomas. The results were
compared with KM, HHAC and classical FCM outcomes.

To improve the reading of this section, we present these
comparative results for one infiltrative SCC #1. For a su-
perficial state of a BCC #1 and a Bowen’s disease #1, only
FCM–RBA clustering data are given, whereas corresponding
KM, HHAC and FCM outcomes are shown in the Supple-
mentary information (Supplementary Figures S2–S5). In
addition, the FCM–RBA results of the remaining samples
(infiltrative SCC #2 and #3, superficial BCC #2–4 and
Bowen’s diseases #2–6) are shown in Supplementary Figures
S6–S15. The histological characteristics of the studied human
skin cancers are indicated in Supplementary Table S1.

‘Hard’ Clustering Results
The H&E-stained histological image of the studied SCC
sample #1, on which the tumor is outlined, is shown in
Figure 2a.

To highlight the distinctive histological regions of this
paraffin-embedded tissue section, KM clustering was applied
with an empirical choice of 11 clusters as already described by
our group.4 To generate comparable results, the dendrogram
of the HHAC clustering was cut to 11 clusters. The resulting

color-coded images are shown in Figures 2b for KM and 2c
for HHAC. Each color is associated to one cluster. The cor-
responding dendrogram used to construct the HHAC color-
coded image is shown in Figure 2d. In addition, Figure 2e
corresponds to the H&E staining of a thin section (5 mm), not
immediately adjacent to the analyzed section, but localized at
circa 25 mm.

The comparison of KM and HHAC images with the cor-
responding H&E-stained section permits an assignment of
the clusters. As shown for KM clustering in Figure 2b, the
pixels belonging to the tumor are grouped into clusters 1, 7
and 9, revealing an intratumoral heterogeneity. The dermis is
represented by clusters 2, 3 and 6, and the ulcerated epi-
dermis by clusters 4, 5, 8, 10 and 11. As shown in Figure 2c,
HHAC clustering results are quite similar to those of KM.

These results indicate that ‘hard’ clustering algorithms are
able to retrieve the histological structures, and especially to
localize tumoral areas within the tissue section. However, the
choice of the number of clusters is a difficult problem that
is usually empirically resolved. When less than 11 clusters
are chosen, the histological regions identified by clustering

Figure 4 Number of non-redundant clusters Knr
s (m) as a function of the

fuzziness index m estimated by the redundancy-based algorithm (RBA) for

the squamous cell carcinoma (SCC) sample #1. Each curve corresponds to a

given value of the threshold s.

Table 1 Optimal parameters of FCM estimated by RBA in
function of the threshold s for the human skin SCC sample #1

S 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

K̂opt
s 9 6 6 6 9 6 6 6 6 6

m̂opt
s 2.1 2.2 2.2 2.2 1.9 2.1 2 2 1.9 1.9

Optimal number of clusters K̂opt
s and the corresponding optimal values of

the fuzziness index m̂opt
s have been determined for 10 different values of the

threshold s from the curves shown in Figure 3.
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algorithms are mixed, and the intratumoral heterogeneity is
no more revealed (data not shown). With more than 11 clusters,
no further interpretable information is obtained (data not
shown). Furthermore, the principal drawback of these ‘hard’
clustering methods is that the cluster membership grade of
each individual spectrum equals to 0 or 1. Nuances of pixel
membership are thus not accessible with ‘hard’ clustering
methods. Consequently, these techniques do not allow to
consider progressive transitions likely to exist at the invasion
front of a tumor or between heterogeneous intratumoral
areas.

Classical FCM Clustering
The results obtained by using the FCM algorithm without
optimized parameters on the same data set are shown in
Figure 3. The fuzziness index m was fixed to the commonly
used default value of 2, according to investigations of other
groups.31 A total of 11 clusters were chosen as they allow an

unequivocal reproduction of the H&E-based histology as
previously described with ‘hard’ clusterings (Figure 2). Each
cluster is presented into a separate image instead of super-
imposing them into only one color-coded image as reported
by others.16,27,31 Indeed, the superimposition presentation
makes it difficult to highlight transitional structures.

A visual comparison of the clusters shown in Figure 3
reveals important redundancies. This was confirmed by the
intercorrelation coefficients Rij between the computed ima-
ges. Indeed, clusters 7 and 9 are correlated with a Rij coef-
ficient equal to 98.3%, 5 and 7 with 82.6%, 5 and 11 with
78.6% and finally 1 and 4 with 76.7%. Similarly, re-
dundancies have also been observed between certain FCM
cluster pairs on all examined skin-cancer samples. This is
supported by the FCM redundant images shown in the
supplementary information for two other representative
cancer samples (Supplementary Figure S3 for BCC #1 and
Supplementary Figure S5 for Bowen’s disease #1); and by the

Figure 5 Fuzzy C-means (FCM) images on the Fourier transform mid-infrared (FT–IR) data set of the human skin squamous cell carcinoma (SCC)

sample #1 constructed with redundancy-based algorithm (RBA)-optimized parameters K̂opt¼ 6 (number of clusters) and m̂opt¼ 2.1 (fuzziness index)

and the corresponding hematoxylin and eosin (H&E)-stained section. Assignment of the clusters: cluster 1 (tumor); 2 (invasive front); 3, 4 and 5 (dermis);

6 (epidermis). The color bar represents the membership value for each pixel. In the corresponding H&E-stained section, SCC is outlined.
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Supplementary Table S2, which shows the maximal values of
the intercorrelation coefficients for all the samples.

These results demonstrate that classical FCM creates non-
informative redundant images, in which only few pixels differ
from one cluster to another when K and m are incorrectly
chosen. Therefore, it is essential to choose the optimal values of
K and m parameters to obtain a biologically relevant clustering.

Optimization of FCM Parameters Using RBA
Simultaneous determination of optimal K and m parameters
was performed using the innovative RBA. In our investiga-
tion, varying settings of the number of clusters from 2 to 20,
and varying values of m from the set m¼ {1.4, 1.5,y, 2.5}
were tested. The curves Knr

s (m), representing the number of
non-redundant clusters as a function of m obtained by this
method for 10 different values of threshold s from the set
s¼ {0.5, 0.55,y , 0.95} are shown in Figure 4 for the SCC
sample #1. Each curve tends to quickly decrease towards a

K̂opt
s value, from which each curve becomes quite stable. The

K̂opt
s values and the corresponding m̂opt

s values for these
thresholds are indicated in Table 1. The optimal number of
clusters K̂opt has thus been estimated by using a majority
voting algorithm as equal to 6. The resulting optimal
value m̂opt is determined as the average of the values of m̂opt

s

obtained for K̂opt
s ¼ 6, and is equal to 2.1. This developed

RBA was applied on all remaining samples and permitted
to estimate an optimal couple of values, K and m, for each
analyzed IR image.

It has to be mentioned, that in our case, classical methods
used to determine the optimal number of FCM clusters K
failed to correlate with standard histopathology. Indeed, the
partition coefficient and classification entropy24 applied with
m¼ 2 give an aberrant value of K¼ 2 that does not permit to
reveal the different tissue structures. These data reinforce the
relevancy of our developed RBA in terms of tissue-structure
differentiation.

Figure 6 Analysis of the tumor/surrounding dermis interface by zooming the fuzzy C-means (FCM) images shown in Figure 5. Cluster 2, characterizing the

invasive front of the tumor is also shown in a 3-D representation. The color bar represents the membership value for each pixel.

Figure 7 Redundancy-based algorithm (RBA) results on the Fourier transform mid-infrared (FT–IR) data set of the human skin superficial basal cell

carcinoma (BCC) sample #1. Fuzzy C-means (FCM) images (a) were constructed with optimized parameters K̂opt¼ 5 and m̂opt¼ 1.6. These parameters were

defined using the RBA-resulting curves (b) and Table 2. Assignment of the clusters: cluster 1 (epidermis); 2, 3 and 4 (dermis); 5 (tumoral areas). The color bar

represents the membership value for each pixel. In the corresponding hematoxylin and eosin (H&E)-stained section (top), BCC (outlined), epidermis (*) and

dermis (þ ) are indicated. H&E-stained section (bottom) of higher quality localized at circa 25 mm from that analyzed by infrared (IR) imaging.
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Histopathological Recognition of Skin Carcinomas Using
FCM–RBA
The images generated by the FCM–RBA are shown in Figure 5
for the human infiltrative skin SCC #1. After comparison
with the histological image, each generated cluster can be
assigned to a precise tissue structure: tumoral area (cluster 1),
invasive front (cluster 2), dermis (clusters 3, 4 and 5) and
epidermis (cluster 6). Moreover, FCM–RBA reveals new
information that is not accessible by conventional histology
or classical ‘hard’ clustering methods. Indeed, it highlights the
presence of a marked heterogeneity both within the tumor as
shown for cluster 1 and within the invasive front as shown for
cluster 2. Compared with ‘hard’ clustering, FCM–RBA allows
to visualize within each of these clusters, spectral nuances
corresponding to membership grade variations of the pixels.
These spectral differences rely on molecular changes within
tissue structures that could reflect changes in the structure/
function of the tumor cells present in these areas. Interest-
ingly, as shown in Figure 6 using a 3-D representation of the
invasive front (cluster 2), FCM–RBA reveals the presence of a
progressive gradient in the membership values of the pixels.
From tumor towards dermis, the membership value of each
pixel gradually increases to reach a maximum, and then
decreases sharply at the edge of the dermis. This indicates
both a tight connection between the tumor (cluster 1) and its
invasive front (cluster 2), and a surprising clear-cut difference
between the invasive front (cluster 2) and the surrounding
dermis (clusters 3, 4 and 5). For two other infiltrative SCC
samples #2 and #3 (Supplementary Figures S6 and S7, in
the Supplementary information), the FCM–RBA also reveals
a progressive increase of the membership values of the IR
pixels within the clusters 2 (SCC #2 and SCC #3) assigned
for their respective invasive front. On a pathological point
of view, considering the invasive front is of great interest,
as it represents a tumor area where the invasive cells can
infiltrate the surrounding tissue. This approach shows
significant potential for probing tumor progression, from
carcinoma to metastases, and consequently may represent
an attractive tool for the early determination of tumor
aggressiveness.

After having analyzed an SCC sample as a model of an
infiltrative skin cancer, the FCM–RBA outcomes are pre-
sented to describe a superficial state of BCC and a Bowen’s
disease. The optimization of FCM parameters by RBA are
shown for these samples in Figures 7b and 8b and in
Table 2 and Table 3, for BCC #1 and Bowen’s disease #1,
respectively.

As shown in Figure 7a, for the superficial BCC #1, FCM–
RBA reveals five clusters that can be easily assigned to
following separate tissue structures: epidermis (cluster 1),
dermis (clusters 2, 3 and 4) and tumoral areas (cluster 5).
Compared with ‘hard’ clustering (Supplementary Figure S2),
fuzzy clustering identifies intratumoral heterogeneities within
cluster 5, as already described for cluster 1 of the previous
SCC sample. An additional original information is evidenced
at the tumor (cluster 5)/normal epidermis (cluster 1) inter-
face. Indeed, a progressive transition from tumor towards
epidermis is observed, reflecting an interconnectivity between
these two regions. These results, directly based on mole-
cular IR vibrational profiles of intrinsic tissue biomolecules,
confirm the morphological interpretation of this connecting
area observed by conventional histopathology. In addition,
they can be explained by the fact that BCC originates from
the transformation of epidermal keratinocytes.32 Contrary to
the infiltrative SCC, the tumor (cluster 5)/dermis (clusters 2,
3 and 4) interface does not present any intermediary struc-
ture, but rather the existence of a well-defined edge that
confirms the superficial state diagnosed for this BCC
sample. Similarly, for the other analyzed superficial BCC
samples #2–4, (Supplementary Figures S8–S10, in the
Supplementary information), both spectral characteristics
of tumor interface, either with epidermis or dermis, are
unambiguously identified.

For the Bowen’s disease sample #1, (Figure 8a), FCM–RBA
reveals five clusters that can be assigned to the following
histological structures: epidermis (cluster 1), dermis (clusters
2, 3 and 4) and tumor (cluster 5). Visual comparative
analysis of clusters 1 and 5 indicate that the tumor is
well localized within the normal epidermis. In addition,
FCM–RBA does not reveal the presence of a gradient in the
membership values of the pixels at the tumor/neighboring
epidermis interface. Contrary to the SCC and BCC studied
samples, this absence of interconnectivity was also demon-
strated for the other Bowen’s samples #2–6 (Supplemen-
tary Figures S11–S15, in the Supplementary information).
Such spectral features are in accordance with the fact
that Bowen’s diseases correspond to well-localized in situ
carcinomas.33

In addition, in accordance with the pathologists, we col-
lected data on healthy skin areas from the superficial BCC #4
and the Bowen’s disease #6. Our developed FCM–RBA clearly
permits to estimate the optimal couple of FCM parameters
(K, m) and to retrieve the classical skin histological struc-
tures: epidermis that is associated to one cluster (with a

Figure 8 Redundancy-based algorithm (RBA) results on the Fourier transform mid-infrared (FT–IR) data set of the Bowen’s disease sample #1. Fuzzy

C-means (FCM) images (a) were constructed with optimized parameters K̂opt¼ 5 and m̂opt¼ 1.8. These parameters were defined using the RBA-resulting

curves (b) and Table 3. Assignment of the clusters: cluster 1 (epidermis); 2, 3 and 4 (dermis); 5 (Bowen’s disease). The color bar represents the membership

value for each pixel. In the corresponding hematoxylin and eosin (H&E)-stained section (top), Bowen’s disease (outlined), epidermis (*) and dermis (þ ) are

indicated. H&E-stained section (bottom) of higher quality localized at circa 25 mm from that analyzed by infrared (IR) imaging.
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membership value 40.9) and dermis associated to four
clusters, which is in accordance to its biochemical marked
heterogeneity (Supplementary Figures S16 and S17).

Conclusion
IR spectral microimaging associated with clustering techni-
ques shows a great potential for the direct analysis of paraf-
fin-embedded tissue sections of human skin cancers. Our
results demonstrate that FCM clustering is more powerful
than classical ‘hard’ clusterings (KM and hierarchical classi-
fication) to reveal biologically relevant information, related
to the tumor heterogeneity and invasiveness. We have de-
veloped an original algorithm dedicated to the simultaneous
determination of the optimal FCM parameters (number of
clusters K, and fuzziness index m). This innovative data
processing makes FT–IR microimaging a promising tool,
integrable to gold standard histology. This could help in the
guidance of the therapeutic strategy, especially for predictive
extension of infiltrative cancer lesions.

Supplementary Information accompanies the paper on the Laboratory

Investigation website (http://www.laboratoryinvestigation.org)
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