
Bone marrow mononuclear cells attenuate fibrosis
development after severe acute kidney injury
Patricia Semedo1,4, Cassiano Donizetti-Oliveira1,4, Marina Burgos-Silva1,4, Marco Antonio Cenedeze1,
Denise Maria Avancini Costa Malheiros2, Alvaro Pacheco-Silva1 and Niels Olsen Saraiva Câmara1,3

One of the early phases that lead to fibrosis progression is inflammation. Once this stage is resolved, fibrosis
might be prevented. Bone marrow mononuclear cells (BMMCs) are emerging as a new therapy for several
pathologies, including autoimmune diseases, because they enact immunosuppression. In this study we aimed to
evaluate the role of BMMC administration in a model of kidney fibrosis induced by an acute injury. C57Bl6 mice were
subjected to unilateral severe ischemia by clamping the left renal pedicle for 1 h. BMMCs were isolated from femurs
and tibia, and after 6 h of reperfusion, 1� 106 cells were administrated intraperitoneally. At 24 h after surgery,
treated animals showed a significant decrease in creatinine and urea levels when compared with untreated animals.
Different administration routes were tested. Moreover, interferon (IFN) receptor knockout BMMCs were used, as
this receptor is necessary for BMMC activation. Labeled BMMCs were found in ischemic kidney on FACS analysis.
This improved outcome was associated with modulation of inflammation in the kidney and systemic modulation, as
determined by cytokine expression profiling. Despite non-amelioration of functional parameters, kidney mRNA
expression of interleukin (IL)-6 at 6 weeks was lower in BMMC-treated animals, as were levels of collagen 1,
connective tissue growth factor (CTGF), transforming growth factor-b (TGF-b) and vimentin. Protective molecules,
such as IL-10, heme oxygenase 1 (HO-1) and bone morphogenetic 7 (BMP-7), were increased in treated animals
after 6 weeks. Moreover, Masson and Picrosirius red staining analyses showed less fibrotic areas in the kidneys of
treated animals. Thus, early modulation of inflammation by BMMCs after an ischemic injury leads to reduced fibrosis
through modulation of early inflammation.
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Despite available strategies for ameliorating acute kidney
injury (AKI) outcomes, mortality rates still range from 50 to
80%, especially in patients in intensive care units and after
kidney transplantation.1 In addition, AKI is a major antigen-
independent factor closely implicated in long-term graft
dysfunction, namely chronic allograft nephropathy (CAN).2

The pathogenesis of this interstitial fibrosis and tubular
atrophy is multi-factorial, but it seems that early ischemic
events represent a start point.3,4 A single AKI may lead to
expression of several pro-inflammatory and fibrotic genes
that may incite fibrosis in the kidney.5

Epithelial-to-mesenchymal transition (EMT) has an im-
portant role in renal fibrosis development. The orchestrated
multi-step differentiation of tubular epithelial cells in
activated myofibroblasts leads to collagen deposition and
a change in tissue architecture.6–9 Transforming growth
factor-b (TGF-b) and connective tissue growth factor
(CTGF) have crucial roles in promoting these events.10,11

Once fibrosis has been established, few approaches are
available to retard the functional deterioration of graft or-
gans. Most of the studies so far have analyzed prevention
rather than reversal of renal disease.12 However, blockage
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of the renin angiotensin system and administration of
mycophenolate mofetil, as well as bone morphogenetic 7
(BMP-7) and hepatocyte growth factor (HGF) therapies, are
good options for better outcomes.13–20

Recently, adult stem cells have emerged as a new therapy
for several diseases.21–23 Of all the adult stem cells in the
body, stem cells from bone marrow seem to be most at-
tractive for therapy because they are easily isolated. There are
two types of stem cells in bone marrow: hematopoietic stem
cells and mesenchymal stem (stromal) cells. Actually, an
inflammatory milieu is necessary for adult stem cell activation,
to secrete several trophic factors, with regenerative and
remodeling properties. Interferon-g (IFN-g) is needed for
indolamine 2,3 secretion by adult stem cell, which can
exert an effect in inhibition of T-cell proliferation, thereby
immunomodulating inflammation.24,25 In nephrology,
stem cell therapy was associated with better outcomes for
AKI in experimental models.26–29 Whole bone marrow ad-
ministration in a remnant model also showed improvement
in progression of chronic kidney disease.30

In this study we report that administration of BMMCs
attenuates renal fibrosis 6 weeks after a severe event of AKI.
Furthermore, we provide evidence that immune modulation
of early inflammatory events might be one mechanism
behind BMMC-mediated protection.

MATERIALS AND METHODS
Animal Model
Female C57BL/6J mice, 8 weeks of age from CEDEME
(Federal University of São Paulo, São Paulo, Brazil), under-
went 60min of unilateral ischemia or sham surgery and were
then monitored for 24 h and at 6 weeks after ischemia. In
brief, doses of ketamine 150mg/kg and xylazine 10mg/kg
were given intraperitoneally. Mice underwent abdominal
incisions and their right renal pedicle was bluntly dissected.
A microvascular clamp (Rocca, São Paulo, Brazil) was placed
on the right renal pedicle for 60min. Animal temperature
was maintained close to 37 1C. Animals were monitored and
maintained for 24 h and 6 weeks before killing. Sham animals
underwent the same surgical procedure without clamping of
the renal artery.

Isolation of BMMCs
Male C57BL/6J mice (n¼ 5) of 4–5 weeks were killed by an
overdose of anesthetics. Tibias and femurs were removed and
flushed with phosphate-buffered saline (PBS) under sterile
conditions. Whole bone marrow cells were washed twice with
PBS and red blood cells were lysed with 0.84% chloride
ammonium buffer. Again, these cells were washed three times
with PBS. This fraction of cells, without red blood cells, is the
BMMC. Cells were counted in Neubauer’s chamber. BMMCs
from receptor IFN knockout animal were isolated in the
same way.

BMMC Immunophenotyping
In brief, a cell suspension (1� 105 cells) of BMMC was
incubated for 40min in saturating concentrations of the
antibodies CD34-FITC, CD105-FITC, CD31-FITC, CD73-PE,
CD117-PE and CD44-PE (BD Biosciences Pharmingen,
San Diego, CA, USA). After three washes, the cells were
centrifuged at 200 g for 5min and resuspended in ice-cold
PBS. Cell fluorescence was evaluated using a flow cytometer
(FACSCanto; Becton Dickinson, Franklin Lakes, NJ, USA).

Cell Treatment
After 6 h of surgery, some animals received BMMCs
intraperitoneally or endovenously. Nearly 1� 106 cells were
administered to each animal.

Cell Labeling for Tracking Assay
The BMMCs were incubated with Qtracker 585nm (Invitrogen,
CA, USA) as recommended by the manufacturer. One
population of Qtracker-labeled cells was analyzed using flow
cytometer (FACSCanto; BD Biosciences). These cells were
injected into the orbital vein or intraperitoneally in four
animals. These animals were killed at 24 h after severe IR.
Kidneys, spleen and lungs were passed through a 70 mM cell
strainer (Becton Dickinson). This was followed by Histopaque
gradient separation (d¼ 1077mg/l; Sigma), and centrifuga-
tion at 400 g for 30min at room temperature. The cells
recovered in the Histopaque/buffer interface were subjected
to flow cytometry (FACSCanto; Becton Dickinson) viewed
through a PE filter set.

Assessment of Renal Function
Serum creatinine was measured by Jaffé’s modified method.
Serum urea was measured using a Labtest Kit (Labtest, Minas
Gerais, Brazil). Urine was collected weekly and a ratio of
urine protein/urine creatinine was used to determine pro-
teinuria (measured by Labtest Kit).

Morphology
Kidneys were obtained 6 weeks after ischemia and analyzed
using Masson and Picrosirius red staining. Renal area was
measured using ImageJ program at a magnification of � 4.
For histological examinations, kidneys were fixed with 10%
buffered formaldehyde for 24 h, washed with 70% ethanol for
24 h and then embedded in paraffin. Sections were cut with a
thickness of 4 mm. A blinded reviewer compared ischemic
kidneys, treated or not, with sham-operated kidneys. To
evaluate the extent of renal interstitial expansion, the fraction
of renal cortex occupied by interstitial tissue staining posi-
tively for extracellular matrix components (collagen) was
quantitatively evaluated in Masson-stained sections by a
point-counting technique in consecutive microscopic fields
at a final magnification of � 100 under a 176-point grid.
Picrosirius red staining was measured at a magnification of
� 20 using the NIS Elements program of Nikon microscopy,
with at least 10 consecutives fields.
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Real Time PCR
Kidney samples were quickly frozen in liquid nitrogen. Total
RNA was isolated using the TRIzol Reagent (Invitrogen,
Carlsbad, CA) and RNA concentrations were determined by
Nanodrop. First-strand cDNAs were synthesized using the
MML-V reverse transcriptase (Promega, Madison, WI,
USA). Reverse transcriptase polymerase chain reaction (PCR)
was performed using TaqMan probes. Sequence Detection
Software 1.9 (SDS) was used for analysis. mRNA expres-
sion was normalized to HPRT abundance. The values are
expressed relative to a reference sample (the calibrator):
sham operated samples. The Ct (threshold cycle) for the
target gene and the Ct for the internal control were
determined for each sample. Samples were run in triplicate.
The relative expression of mRNA was calculated by 2�DDCT.
All the experimental samples are expressed as an n-fold
difference relative to the calibrator.

Bioplex
A Bio-Plex mouse Th1/Th2-Plex cytokine assay kit (Bio-Rad
Laboratories, Hercules, CA, USA) was used to test samples
for the presence of eight cytokines: interleukin (IL)-2, IL-4,
IL-5, IL-10, IL-12(p70), granulocyte macrophage colony-sti-
mulating factor (GM-CSF), tumor necrosis factor (TNF)-a
and IFN-g. The assay was read on the Bio-Plex suspension
array system, and the data were analyzed using Bio-Plex
Manager software version 4.0. Standard curves ranged from
1.95 to 32 000 pg/ml.

Immunohistochemistry
Localization of a-SMA (diluted 1:600; M0851, DAKO),
vimentin (diluted 1:600, DAKO) and FSP-1 (diluted 1:600,
A5114, DAKO) were performed in paraffin-embedded
sections. Previously, the slides were deparaffinized, rehy-
drated and submitted to Tris-EDTA pH 9 antigen retrieval
solution at 95 1C. The endogenous peroxidase activity
was blocked with 3% hydrogen peroxide, and sections
were also blocked with Protein Block Solution (DAKO).
Slides were then incubated with primary antibody or
negative control reagent, followed by incubation with the
labeled polymer Envision (DAKO), using two sequential
30-min incubations at room temperature. Staining is com-
pleted by a 1–3min incubation with 3,30-diaminobenzidine
(DAB)þ substrate-chromogen, which results in a brown-
colored precipitate at the antigen site. Hematoxilin counter-
staining was performed.

Statistical Analysis
Data were expressed as mean±s.d. Analysis of variance
(ANOVA) and Fisher’s least-significant difference test were
used to compare means of multiple groups statistically. For
paired data, Student’s t-test was used. Statistical significance
was set at Po0.05.

RESULTS
BMMC Immunophenotyping
BMMCs were characterized using some markers and analyzed
by FACS. As these cells correspond to nearly all cells from bone
marrow, they were positive for several markers (Figure 1a–f).
CD34 and CD117 are hematopoeitic markers. CD73, CD44
and CD105 positives are indicative of mesenchymal stem cells
(MSCs). CD31 is a PECAM-1 molecule well expressed in
endothelial cells. Therefore, it is possible to observe that
BMMC is composed of all progenitors present in bone marrow.

Cell Therapy Induced an Improvement in Renal
Parameters at 24h and BMMCs are Present in Ischemic
Kidney after IP Administration
After 24 h of kidney reperfusion (and 18 h after treatment
with mononuclear cells from bone marrow), creatinine and
urea functional parameters showed significant amelioration
in treated animals (Figure 2a and b), independent of their
administration route as well as if BMMCs were from IFN
receptor knockout donors. Moreover, for tracking these cells
at ischemic kidney, lung and spleen, BMMCs were labeled
with Qtracker. In FACS charter, it is possible to observe that
BMMC labeling is intense and all cells have been labeled
(Figure 2c). Tracking these cells by PE filter set, we found that
endovenous administration led to an accumulation of cells in
the lung. Moreover, just on IP administration, BMMC could
be found in ischemic kidney (Figure 2d).

Treatment with BM Leads to Downregulation of
Cytokine Expression at 24 h on Renal Tissue and
Systemic Modulation
BMMC treatment led to downregulation of Th1 cytokines
(IL-6) in kidneys after 24 h; nevertheless, levels of TNF-a did
not differ between groups. On the other hand, IL-10, a Th2
cytokine, was increased after treatment (Figure 3).

However, BMMCs from receptor IFN KO did not change
renal cytokines profile. IL-6 mRNA expression was elevated
in untreated animals. In addition, IL-4 is less expressed in
treated BMMCs from receptor IFN KO when compared with
untreated animals (Figure 3).

Systemic modulation was also observed, as ischemia and
reperfusion injury (IRI) leads to change in the systemic
cytokines balance. From cytokines analyzed by Bioplex,
IL-12(p70), IL-10, IL-5 and TNF-a were decreased in serum
of animals treated with BMMCs (Figure 3). IFN-g and
GM-CSF serum levels did not change. IL-2 and IL-4 could
not be measured with this assay.

Functional Parameters after 6 Weeks
In necropsy, gross macroscopic histology revealed that the
kidneys of BMMC-treated animals were not reduced in size
similar to the kidneys of untreated animals (Figure 4a and b).
Renal area was measured and revealed that ischemic kidneys
from treated animals are bigger in size than untreated ones
(Figure 4c).
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In contrast to 24h functional results, serum creatinine levels
were not changed with treatment after 6 weeks. However, animals
subjected to severe AKI after 6 weeks showed higher levels of
serum creatinine when compared with sham animals (Figure 4d).

Masson Trichrome’s staining revealed that the kidneys
of BMMC-treated animals subjected to severe ischemia
and reperfusion injury showed less fibrosis when compared
with kidneys of untreated animals. This pattern was also
observed after Picrosirius red staining (Figure 4e and f).

Urine analysis showed that untreated animals developed
proteinuria when compared with sham animals. And besides,
BMMC-treated animals have an attenuated proteinuria when
compared with untreated animals (Figure 4g).

Treatment with BM Leads to Downregulation of
Cytokine and Pro-Fibrotic Molecules at 6 Weeks
After 6 weeks, the expression of IL-6 and TNF-a in the
kidneys of BM-treated animals was decreased when com-
pared with the untreated animals (Figure 5a and b). IL-10, an
anti-inflammatory cytokine, has increased mRNA levels in
the kidney tissues of BMMC-treated animals (Figure 5c).

mRNA expression of collagen type 1, CTGF, TGF-b and
vimentin also provided evidence of decreased fibrosis in the
kidneys of BMMC-treated animals (Figure 5d–g), although
the reduction in TGF-b mRNA levels was not significant. On
the other hand, protective molecules such as heme oxygenase 1
(HO-1) and BMP-7 were expressed at higher levels in the kidneys
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of treated animals (Figure 5h and i). These data correlated with
immunohistochemistry for a-SMA, vimentin and FSP-1, as
shown in Figure 6.

DISCUSSION
A long-term follow-up study (1–10 years) with AKI patients
revealed that approximately 12.5% were dialysis dependent
and 19–31% had chronic kidney disease.31,32 This ob-
servation is still unrecognized by most clinicians. In renal
transplantation settings, the negative long-term effect of AKI
is more apparent. New strategies to promote better tissue
response after ischemic events are therefore warranted.

In this study we showed that acute inflammation from severe
AKI led to renal sclerosis. More interestingly, BMMC therapy
immediately after the injury halted progression of this chronic
fibrosis, mainly because of modulation of the inflammatory
response. A single administration of whole bone marrow cells
after the IRI led to improved functional parameters at 24 h.
In addition, modulation of kidney inflammation and systemic
inflammation were observed. It is worth emphasizing that we
observed a severe impairment in renal function at 24h. In this

model, the contralateral kidney is left untouched, and less impor-
tant renal function impairment should have been observed.

However, in this study we assume that the severe damages
caused by 60min of ischemia and a prolonged intraoperatory
time could aggravate renal filtration function and ultimately
harm the contralateral organ. As acute renal injury is an
inflammatory systemic syndrome, circulating mediators, such
as cytokines, could have affected the function in contralateral
organ also.33,34 Distant organ damages after an AKI have been
extensively studied. Not only organs can be injured, but also
changes can be observed in brain, lung and liver.34–37

Decreased expression IL-6 (Th1 profile) and increased
expression of IL-10 mRNA (Th2 profile) in kidney tissue
after BMMC treatment were associated with a better func-
tional outcome and show the important role of inflammation
in AKI. Moreover, this modulation was systemic as expres-
sion of serum cytokines IL-12(p70), IL-5, TNF-a and IL-10
was also decreased. In this study our data show that BMMCs
may lead to amelioration of inflammation, in situ or sys-
temic, after IRI through downregulation of Th1cytokines and
by promoting a Th2-based cytokine profile.38,39
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Surprisingly, serum IL-5 expression after severe unilateral
IRI was increased. This increase is probably correlated with
the B-cell response after IRI. IL-5 helps B cells to become
antibody-secreting plasma cells. Transgenic mice expressing
the IL-5 gene show elevated levels of serum IgM, IgA and IgE;
increased numbers of B-1 cells and eosinophils; and persis-

tent eosinophilia.40 Several studies showed that the IgM
isotype secreted by B cells is involved in IRI.41

The immunosuppressive properties of stem cells may be
the key factor in this model. Particularly, from bone marrow
cells, MSCs can suppress T-cell activation and also induce
tolerance.42,43 The immune modulatory properties of MSCs
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have potential application as a novel immunosuppressive
therapy for graft-versus-host disease (GVHD). The landmark
article by Le Blancet al44 showed great results through 1 year
of follow-up of GVHD patients treated with MSCs. The
immune modulatory mechanisms of MSCs are still under
investigation. Aggarwal and Pittenger45showed that MSCs
can interact with several immune cells and induce a stronger
anti-inflammatory response by changing the cytokine secre-
tion profile and increasing the proportion of T regulatory
cells. PGE-2,45 TGF-b,46 HGF,47 inducible NO synthase
(iNOS)48 and IDO49 are the proposed mechanism to explain
such properties. In AKI models, modulation of the in-
flammatory response leading to an increased Th2 response
was also observed after treatment with MSCs,28,29 and was
associated with a better outcome.

To show this immunomodulation by adult stem cell,
we used a receptor IFN KO BMMC. We intend to
show that without activation, BMMCs could not modulate

inflammation. In fact, the immunomodulation observed by
BMMC treatment was not observed in treatment with
receptor IFN KO BMMC. Once BMMC is not activated, it
does not secrete IDO 2,3 that can modulate T-cell
proliferation.25 However, creatinine and urea levels were
reduced. BMMC, without activation by IFN, can secrete
other trophic factor that may regulate survival or apoptotic
events, which are also present in the IRI event.27,50

The EMT is one of the sources of myofibroblasts in kidney
fibrogenesis in animal models.51,52 Progressive graft dys-
function due to interstitial fibrosis and tubular atrophy (IF/
TA) in the first year is a hallmark problem in kidney allo-
grafts.51,53,54 Primarily, TGF-b is the molecule responsible for
tubular epithelial cells changing their morphology to more
mesenchymal cells.11,55 However, several studies have high-
lighted others signals that contribute to this transition, such
as chronic hypoxia milieu, reactive oxygen species (ROS) and
inflammation.56–58 IL-1-b and TNF-a, pro-inflammatory
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Figure 4 Macroscopic view of kidneys and functional parameters after 6 weeks of severe unilateral ischemia–reperfusion injury (IRI). (a) After 6 weeks,
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was subjected to the same conditions in (a); however, after 6 h the animal was treated with the mononuclear fraction of bone marrow. (c) Renal area

of all kidneys submitted to severe IR after 6 weeks. (d) Creatinine levels after 6 weeks. (e) Masson’s trichrome staining was expressed as a percentage

of the field area. (f) Picrosirius red staining was quantified by image analysis in NIS elements of Nikon. (g) Follow-up of proteinuria. For all groups, n¼ 5.

*Po0.05. Results are shown as mean values ±s.d. Abbreviations: 6 wk, 6 weeks; BMMC, bone marrow mononuclear cell; IR, ischemia–reperfusion injury.

Renal fibrosis and bone marrow cells

P Semedo et al

www.laboratoryinvestigation.org | Laboratory Investigation | Volume 90 May 2010 691

http://www.laboratoryinvestigation.org


cytokines, seem to promote EMT.59–61 Moreover, in vitro
studies have shown that immunosuppressive drugs are
capable of inhibiting EMT.62 Thus, in our model the lower
expression of pro-inflammatory cytokines in the early phase
may protect the kidney from injury. This attenuation of in-
jury at 24 h translates to a better outcome (less fibrosis and
less inflammation in renal tissue) at 6 weeks when compared
with untreated animals.

This early modulation of inflammation after a severe IRI,
resulting from bone marrow stem cell administration, was
even apparent in the long term in kidneys by the lower
expression of pro-inflammatory cytokines and ultimately led
to less fibrosis. All fibrotic molecules studied in our model
(collagen I, vimentin, CTGF and TGF-b) were reduced in
treated animals, indicating less fibrosis. Moreover, although
we observed the decrease in fibrosis extension, the treated
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animals had higher expression of BMP-7 and HO-1. In chronic
inflammation, there is significant activation of the adaptive
immune response due to significant mononuclear infiltration.
Of the cytokines analyzed in kidney, IL-6 is decreased and IL-10
increased after BMMC treatment. Immunosuppressive pro-
perties of MSCs, present inside the BMMCs, may lead to the
modulation observed in kidney after this treatment. Our group
and others have already shown the modulation of inflamma-
tion after MSC treatment.27–29

Several groups showed evidence for BMP-7 as a potential
antifibrotic agent in different models of renal disease. Renal
BMP-7 disappears early in fibrogenic renal disease, which
may facilitate its progression. BMP-7 improves maintenance
of nephron function and structural integrity.63–70 BMMC
treatment leads to increased expression of BMP-7, probably
by inhibiting the progression of fibrosis. BMP-7 counteracts
the action of TGF-b in EMT, meaning that BMP-7 tends
to preserve the epithelial phenotype.71 In our group, by
working with the same model, we showed that BMP-7
mRNA expression was higher in animals pre-treated with

cyclooxygenase inhibitor.72 The treated animals presented as
less fibrotic with augmented BMP-7 expression.

HO-1 was also expressed at higher levels after treatment.
HO-1 are the rate-limiting intracellular enzymes that degrade
heme to biliverdin, CO, and free divalent iron.73 The role of
HO-1 in renal fibrosis has been studied previously.74,75 Kie et al75

showed that HO-1�/� mice are prone to express TGF-b on renal
tubular cells, have increased macrophage infiltration and develop
more fibrosis after unilateral ureteral obstruction.

In summary, amelioration of progression of renal disease
in our experimental model was due to inhibition of
early inflammatory events after IRI. Once the kidney was
protected from early and intense inflammatory responses, the
progression to fibrosis was attenuated.
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