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Sjögren’s syndrome (SS) involves a chronic, progressive inflammation primarily of the salivary and lacrimal glands leading
to decreased levels of saliva and tears that eventually result in dry mouth and dry eye diseases. TH17 cell populations
secreting IL17A have been shown to have an important function in an increasing number of autoimmune diseases,
including SS. In this study, we investigated the function of IL17A on SS development and onset. Adenovirus-5
vectors expressing either IL17R:fragment of crystallization (Fc) fusion protein or LacZ were injected through retrograde
cannulation into the salivary glands of SS-susceptible (SSS) C57BL/6.NOD-Aec1Aec2 mice between 6 and 8 weeks of age
(a pre-disease stage) or 15 and 17 weeks of age (a diseased stage). The mice were subsequently characterized for their
SS phenotypes. Mice cannulated with the Ad5-IL17R:Fc viral vector at either 7 or 16 weeks of age exhibited a rapid
temporal, yet persistent, decrease in the levels of serum IL17 as well as the overall numbers of CD4þ IL17þ T cells
present in their spleens. Disease profiling indicated that these mice showed decreased lymphocytic infiltrations of their
salivary glands, normalization of their antinuclear antibodies repertoire, and increased saliva secretion. In contrast, mice
cannulated with the control Ad5-LacZ viral vector did not exhibit similar changes and progressed to the overt disease
stage. The capacity of the Ad5-IL17R:Fc-blocking factor to reduce SS pathology in SSS mice strongly suggests that IL17 is
an important inflammatory cytokine in salivary gland dysfunction. Thus, therapeutic approach targeting IL17 may be
effective in preventing glandular dysfunction.
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Sjögren’s syndrome (SS) is a chronic, systemic autoimmune
disease characterized most notably by the development of dry
eyes and dry mouth manifestations, indicative of secretory
dysfunction of the lacrimal and salivary glands.1–3 Although
an underlying cause of SS remains elusive, studies using the
NOD/LtJ and C57BL/6.NOD-Aec1Aec2 mouse models of SS
have provided evidence that this autoimmune exocrinopathy
progresses through several consecutive, yet distinct, phases.1–3

In the first phase, occurring between birth and 6–8 weeks
of age, a series of aberrant genetic, physiological, and bio-
chemical activities associated with retarded salivary gland
organogenesis and acinar cell apoptosis occur before initia-
tion of detectable autoimmunity. In the second phase,
occurring between 8 and 18–20 weeks of age, various leuko-
cyte populations first by antigen-presenting cells, especially
dendritic cells followed by T and B lymphocytes, infiltrate
the exocrine glands with a concomitant increase in the

expression of inflammatory cytokines and production of
autoantibodies. In the last phase, occurring usually after 18
weeks of age, significant secretory dysfunction of the salivary
and lacrimal glands occurs, most likely the result of pro-
duction of pathogenic autoantibodies reactive against the
muscarinic receptor type III.4,5 Previous studies have shown
that intervention or disruption of the biological or im-
munological elements identified in one or more of the three
phases delays or prevents the subsequent onset of SS in these
murine models.5–7

Although these earlier studies have implicated both TH1
and TH2 cell-associated functions in the development and
onset of clinical SS, recent identification of the CD4þTH17
memory cells within the lymphocytic focus (LF) of lacrimal
and salivary glands of SS-susceptible (SSs) C57BL/6.NOD-
Aec1Aec2 mice, as well as minor salivary glands of human
SS patients, greatly expands the potential complexity in
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deciphering the autoimmune response underlying SS.8,9 The
TH17 cell population, while clearly a subset of CD4þ
memory effector T cells, is distinct from either the TH1 or
TH2 cell lineages.10–14 TH17 effector cells secrete at least one
of the six cytokines belonging to the IL17 family, that is
IL17A, IL17B, IL17C, IL17D, IL25, and/or IL17F; however,
IL17A (IL17), the signature cytokine, has received the greatest
attention in studies of autoimmune diseases.15 The IL17
cytokines are potent pro-inflammatory molecules, actively
involved in tissue inflammation through induction of
pro-inflammatory cytokine and chemokine expressions.16 In
addition, IL17 is involved in the mobilization, maturation,
and migration of neutrophils through the release of IL8 at the
site of injury.17 Interestingly, IL17A is known to regulate
Foxp3þ TReg cells and vice versa.18

Although TH17 cells have been implicated in several au-
toimmune diseases (eg Crohn’s disease,19,20 experimental
autoimmune encephalomyelitis,21 collagen-induced arthritis
CIA),21 SS,8 and others,2,3 and this characteristic may require
signaling from TH1 cells already present in the lesion.3 In any
event, recent observational studies in SS patients and animal
models of primary SS have identified the presence of IL17
and its activating cytokine IL23 in the lymphocytic infiltrates
of the exocrine glands, as well as higher levels of circulating
IL17 in both sera and saliva,8,9 raising the question of the
importance of IL17 in SS. Thus, the goals of this study were
to determine whether blocking IL17 can directly interfere
with the onset of SS-like disease by improving the pathology
and clinical signs in the salivary glands and, in part, identify
IL17 as a potential therapeutic target in preventing the
development or reversing progression of SS-like disease.

MATERIALS AND METHODS
Animals
SSS C57BL/6.NOD-Aec1Aec2 mice were bred and maintained
under specific pathogen-free conditions. The animals were
maintained on a 12 h light–dark schedule and provided food
and acidified water ad libitum. At times indicated in the text,
mice were euthanized by cervical dislocation after deep an-
esthetization with isoflurane, after which organs were freshly
explanted for analyses. Both the breeding and use of these
animals for the present studies were approved by the Uni-
versity of Florida’s IACUC. Salivary glands of C57BL/6.NOD-
Aec1Aec2 mice were cannulated with IL17-blocking vector,
Ad5-IL17R:fragment of crystallization (Fc), using retrograde
injections at either 8 weeks of age (n¼ 9) or 17 weeks of age
(n¼ 12). Age- and sex-matched control mice (n¼ 10 per age
group) received the Ad5-LacZ control vector using the same
protocol.

Production of Ad5-LacZ and Ad5-IL17R:Fc Vectors
The recombinant adenovirus vectors used in this study were
generously provided by Dr Jay K Kolls (Children’s Hospital of
Pittsburgh, Pittsburgh, PA, USA). These vectors were con-
structed based on the first generation serotype 5 adenovirus

(Ad5) and shown to produce their appropriate and func-
tional products.22–24 In brief, the Ad5-IL17R:Fc vector was
initially made by fusing the extracellular domain of mouse
IL17R with the murine IgG1 CH2 and CH3 domains. The
functionality of the fusion protein was tested by inhibiting
recombinant IL17-induced production of IL6 in 3T3 fibro-
blasts.25 The construct was expressed in vivo by transferring
the fusion gene into an E1-deleted recombinant adenovirus
(Ad5-IL17R:Fc).25 To obtain sufficient viral vectors for the
present studies, each recombinant vector was amplified
in HEK293 cells, purified by two rounds of CsCl gradient
centrifugation, then dialyzed against 100mM Tris–HCl (pH
7.4), 10mM MgCl2, and 10% (v/v) glycerol, as described
elsewhere.26

Retrograde Salivary Gland Cannulation of Ad5-LacZ or
Ad5-IL17R:Fc Vectors
Previous studies have shown that retrograde salivary gland
cannulation is an effective method to direct local gene ex-
pression in the salivary glands.27–29 In brief, before cannu-
lation, each mouse was anesthetized with a ketamine:xylazine
mixture ((100mg/ml, 1ml/kg body weight; Fort Dodge
Animal Health, Fort Dodge, IA) and xylazine (20mg/ml,
0.7ml/kg body weight; Phoenix Scientific, St Joseph, MO,
USA)) intramuscularly. Stretched PE-10 polyethylene tubes
were inserted into each of the two openings of the salivary
ducts. After securing the cannulas, the mouse received an
intramuscular injection of atropine (1mg/kg), followed
10min later by a slow, steady injection of viral vector. Each
salivary gland received 50 ml of vector solution containing
107 viral particles. This vector dose was chosen based on
published literature in which dosage optimizations were
performed extensively.30,31 The cannulas were removed 5min
later to ensure successful cannulation.

Measurement of Stimulated Saliva Flow
To measure stimulated saliva flow, individual non-anesthe-
tized mice were weighed and given an intraperitoneal injec-
tion of 100 ml of phosphate-buffered saline (PBS) containing
isoproterenol (0.02mg/ml) and pilocarpine (0.05mg/ml)
(Sigma-Alrich, St Louis, MO, USA). Saliva was collected for
10min from the oral cavity of individual mice using a micro-
pipette starting 1min after injection of the secretagogue. The
volume of each saliva sample was measured. Before vector
cannulation and again at each time point designated in the
text, saliva and sera were collected from each mouse. Samples
were stored at �801C until analyzed.

Determination of IL17 Cytokines Level
Measurement of IL17 in serum samples were performed
using the mouse IL17 Bio-Plex Cytokine Assay (Bio-Rad,
Hercules, CA, USA). All procedures were performed ac-
cording to the manufacturer’s instructions. Readings were
carried out using the Luminex 200 system (Luminex, Austin,
TX, USA). Standard curves were generated from 3.1 to
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10 200 pg/ml. The lower cutoff level for detection by the
software was 1 pg/ml.

Intracellular Cytokine Staining and Flow Cytometric
Analysis
Splenocytes were prepared as previously described.6 Cells
were plated in a 24-well microtiter plate pre-coated with anti-
CD3 (10 mg/ml) and anti-CD28 antibodies (2mg/ml) and
incubated for 5 h with leukocyte activation cocktail con-
taining GolgiPlug (2 ml/ml). Collected cells were fixed and
permeabilized using Cytofix/CytopermFixation/Permeabili-
zation. Flow cytometric acquisition for intracellular staining
was performed after staining with PE-Cy5-anti-mouse CD4
and PE-anti-IL17A. The cells were counted on an FACS-
Calibur (BD, Franklin Lakes, NJ, USA) and analyzed by FCS
Express (De Novo Software, Los Angeles, CA, USA).

Histology
Following euthanasia, salivary glands were surgically re-
moved from each mouse and placed in 10% phosphate-
buffered formalin for 24 h. Fixed tissues were embedded
in paraffin and sectioned at 5 mm thickness. Three non-
consecutive sections separated by 100 mm and cut across the
entire glands were used. Paraffin-embedded sections were de-
paraffinized by immersing in xylene, followed by dehydration
in ethanol. The paraffin-embedded salivary glands were
prepared and stained with hematoxylin and eosin (H&E) dye.
Stained sections were observed under a microscope for
glandular structure and leukocyte infiltration determination.
A double-blinded procedure was used to enumerate leuko-
cytic infiltrations in the histological sections of salivary
glands. In this study, LF were defined as aggregates of 450
leukocytes quantified per each histological section. Calcula-
tions were based on a particular histological section with the
most severe LF in the gland.

Immunofluorescent Staining for B and T Cells
Histological sections of salivary glands were incubated with
rat anti-mouse B220 (BD Pharmingen, San Jose, CA, USA)
and goat anti-mouse CD3 (Santa Cruz Biotechnology, Santa
Cruz, CA, USA), followed by incubation with Texas Red-
conjugated rabbit anti-rat IgG (Biomeda, Foster City, CA,
USA) and FITC-conjugated rabbit anti-goat IgG (Sigma-
Aldrich). The slides were mounted with DAPI-mounting
medium (Vector Laboratories, Burlingame, CA, USA).

Sections were observed at � 200 magnification using a
Zeiss Axiovert 200M microscope and images were obtained
with AxioVs40 software (Ver. 4.7.1.0, Zeiss) (Carl Zeiss,
Thornwood, NY, USA).

Immunohistochemical Staining for IL17 in Salivary
Glands
Immunohistochemical staining for IL17A was carried out as
previously described.8 In brief, paraffin-embedded salivary
glands were de-paraffinized by immersion in xylene, followed

by antigen retrieval with 10mM citrate buffer, pH 6.0. Tissue
sections were incubated overnight at 41C with anti-IL17
antibody (Santa Cruz Biotechnology). Isotype controls were
performed with rabbit IgG. The slides were incubated with
biotinylated goat anti-rabbit IgG followed by horseradish
peroxidase-conjugated avidin–biotin–peroxidase incubation
using the Vectastain ABC kit. The staining was developed by
using diaminobenzidine substrate (Vector Laboratories), and
counterstaining was performed with hematoxylin. Stained
sections were observed at � 200 magnification using a Zeiss
Axiovert 200M microscope and images were obtained with
AxioVs40 software (Ver. 4.7.1.0, Zeiss) (Carl Zeiss).

Detection of Antinuclear Antibodies in the Sera
Antinuclear antibodies (ANA) in the sera of mice were de-
tected using HEp-2 ANA kit (INOVA Diagnostics, San Diego,
CA, USA). All procedures were performed according to the
manufacturer’s instructions. In brief, HEp-2-fixed substrate
slides were overlaid with appropriate mouse sera diluted 1:40,
1:80, and 1:160. Slides were incubated for 1 h at room tem-
perature in a humidified chamber. After three washes for
5min with PBS, the substrate slides were covered with Alexa
488-conjugated goat anti-mouse IgG (H/L) (Invitrogen,
Carlsbad, CA, USA) diluted 1:100 for 45min at room
temperature. After three washes, fluorescence was detected
by fluorescence microscopy at � 200 magnification using
a Zeiss Axiovert 200M microscope and all images were ob-
tained with AxioVs40 software with constant exposure of
0.3 s (Carl Zeiss). In this study, data are the results using 1:40
dilutions of sera from each experimental group.

Statistical Analyses
Statistical evaluations between saliva collections were de-
termined by using Mann–Whitney U-test generated by the
GraphPad InStat software (GraphPad Software, La Jolla, CA,
USA). The two-tailed P-value o0.05 was considered sig-
nificant.

RESULTS
Reduction of Serum IL17 Cytokine Levels After
Transduction with Ad5-IL17R:Fc Vector
Although adenoviral vectors have been shown to elicit opti-
mal recombinant gene expressions around day 5 post-infec-
tion, which then persist for approximately 2 weeks,32 this
study used immunohistochemistry staining against LacZ
protein to show that optimal transduction efficiency was
approximately 26±5% at 2 weeks post-infusion, which de-
creased to 15±3% by 9 weeks (data not shown). To de-
termine the efficacy of the Ad5-IL17R:Fc-blocking vector to
reduce the systemic levels of IL17 in C57BL/6.NOD-Aec1Aec2
mice after transduction of the salivary glands, IL17 levels
were quantified in sera collected at several time points post-
cannulation.

As shown in Figure 1a, C57BL/6.NOD-Aec1Aec2 mice
treated with the Ad5-IL17R:Fc vector at 8 weeks of age

The function of IL17 in Sjögren’s syndrome
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exhibited a marked temporal decrease in IL17 levels at both 3
and 18 weeks post-treatment compared with baseline levels at
7 weeks of age. Mice receiving the control Ad5-LacZ vector
showed highest IL17 levels at 7 weeks of age (pre-diseased
state), which gradually decreased with age; however, these
decreases were not statistically significant and appeared to be
consistent with normal progression of the mice.8 Similar
observations were seen in C57BL/6.NOD-Aec1Aec2 mice
treated with Ad5-IL17R:Fc or Ad5-LacZ vector at 17 weeks of
age (Figure 1b). Note, however, that by 17 weeks of age,
serum IL17 levels were markedly reduced in untreated mice.
Nevertheless, the Ad5-IL17:Fc vector, but not the Ad5-LacZ
vector, was capable of reducing the serum levels even further.
These results support the functional efficacy of the
Ad5-IL17:Fc viral vector in suppressing IL17 levels both
transiently and stably (up to 18 weeks).

Decreased Numbers of IL17-Producing CD4þ T Cells in
the Spleens of Ad5-IL17R:Fc-Transduced Mice
Mice treated with Ad5-IL17R:Fc or Ad5-LacZ at either 8 or
17 weeks of age were euthanized at 27 and 29 weeks of age,
respectively. The splenocytes were isolated and examined for
the number of IL17-secreting CD4þT cells. As presented in
Figure 2a and b, spleens of C57BL/6.NOD-Aec1Aec2 mice
contained about 4% of CD4þ IL17þT cells at 7 weeks of age
and this increased to over 8% by 19 weeks post-Ad5-LacZ
treatment. This result is consistent with the natural aging of
the mice (unpublished data) and is not considered a direct
effect of treatment with Ad5-LacZ vector. In contrast, as
shown in Figure 2c, mice treated with Ad5-IL17R:Fc at 8
weeks of age showed no increased levels of CD4þ IL17þT
cells at 19 weeks post-treatment. A similar functional efficacy
of Ad5-IL17R:Fc vector treatment was observed in mice
treated at 17 weeks of age (Figure 2d–f) in which more than a
twofold decrease in the number of IL17-secreting CD4þT
cells was seen when examined at 29 weeks of age. In contrast,
only a slight decrease in the number of CD4þ IL17þT cells
was observed in mice treated with the Ad5-LacZ
vector. These data suggest that even though the Ad5 vector is

transient and presumably restricted locally to the salivary
glands, the effect on C57BL/6.NOD-Aec1Aec2 mice can be
systematic and sustained longer than anticipated as evi-
denced by the decrease in the levels of IL17-secreting cells at
12 or 19 weeks post-treatment.

Reduced SS-like Disease in the Salivary Glands of
C57BL/6.NOD-Aec1Aec2 Mice After Transduction with
Ad5-IL17R:Fc Vector
The disease profile in C57BL/6.NOD-Aec1Aec2 mice is well
characterized in that they exhibit loss of saliva secretion
concomitantly with the appearance of LF in the exocrine
glands and increased levels of ANAs.1 Thus, to determine
the effect of blocking IL17 on the development of SS,
mice treated by salivary gland cannulation with either
Ad5-IL17R:Fc-blocking vector or Ad5-LacZ control vector at
either 8 or 17 weeks of age, were examined for their SS-like
disease phenotype at 18 and 12 weeks after cannulation,
respectively. Histological examinations of the salivary glands
from mice treated with Ad5-IL17R:Fc vector at either 8 or 17
weeks of age revealed a marked decrease in the number of LF
at time of euthanization, that is 26 and 29 weeks of age,
respectively (Figure 3). As presented in Table 1, Figure 3a and d,
of the C57BL/6.NOD-Aec1Aec2 mice whose salivary glands
were treated with Ad5-IL17R:Fc vector at 8 weeks of age
(early phase treatment), 67% (6 of 9) had no detectable LF in
the salivary glands, whereas 83% (5 of 6) mice whose salivary
glands were treated with the control Ad5-LacZ vector showed
a dramatic increase in the number of LF. Similarly, of the
C57BL/6.NOD-Aec1Aec2 mice treated with Ad5-IL17R:Fc
vector at 18 weeks of age (late phase treatment), 83% (10 of
12) had no detectable LF in the salivary glands, compared
with 83% (5 of 6) mice treated with the Ad5-LacZ control
vector (Table 1; Figure 3g and j). Immunofluorescent staining
revealed both B and T lymphocytes with IL17 positive cells
within the salivary gland ductal and acinar cells and LF of
Ad5-LacZ-treated mice (Figure 3b, c, h and i), but not in
Ad5-IL17R:Fc-treated mice (Figure 3e and k).

Figure 1 Serum IL17 cytokine levels. Sera were collected at 7 (baseline), 11, and 26 weeks with n¼ 3 for each age group (a), and 16 (baseline), 20, 27 weeks

with n¼ 3 for each age group (b). (NS: not significant, P¼ *o0.05).
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Production of autoantibodies, including ANA, may be
independent of the TH17-IL17 system, but it is one of the
important criteria in diagnosing SS disease. Sera obtained
from mice treated with the Ad5-LacZ vector at 8 weeks of age
in the early treatment group exhibited the expected changes
in ANA-staining pattern, evolving from a faint cytoplasmic/
nuclear to a homogenous nuclear profile between 7 and
26 weeks of age, indicative of an SS disease ANA-staining
profile (Figure 4a and b). In contrast, mice that received
Ad5-IL17R:Fc vector maintained weak cytoplasmic/nuclear-
staining pattern between 7 and 26 weeks of age, or 18 weeks
post-treatment (Figure 4c). As anticipated, sera collected
from 16 weeks old C57BL/6.NOD-Aec1Aec2 mice, that is 1
week before cannulation in the late treatment group, were
positive for ANA with a homogenous nuclear pattern. The
ANA profile remained homogenous nuclear with higher
intensity at 10 weeks post-treatment with Ad5-LacZ vector.
Paradoxically, mice treated with Ad5-IL17R:Fc vector shifted
from homogenous nuclear to normal cytoplasmic/nuclear
ANA profile (Figure 4f). Therefore, blocking IL17 appears to
have a significant effect on the ANA profiles in SSS C57BL/
6.NOD-Aec1Aec2 mice.

Preventing Secretory Dysfunction or Restoring Normal
Saliva Flow in C57BL/6.NOD-Aec1Aec2 Mice After
Ad5-IL17R:Fc Treatment
To determine whether the Ad5-IL17R:Fc vector is capable
of preventing SS disease progression in C57BL/6.NOD-

Aec1Aec2 mice when treated before development of SS (ie 7
weeks of age), or restoring normal saliva secretion when
treated at the late stage of SS development (ie 17 weeks of
age), saliva volumes were collected and measured post-can-
nulation. As presented in Figure 5a, mice whose salivary
glands were cannulated at 7 weeks of age with Ad5-IL17R:Fc
vector retained normal saliva flow at 3 and 18 weeks post-
cannulation compared with baseline level at 7 weeks of age.
In contrast, mice that received control Ad5-LacZ vector
showed the expected gradual decrease in saliva secretion over
this same time intervals. Similarly, mice whose salivary glands
were treated with Ad5-IL17R:Fc vector at 17 weeks of age
exhibited temporally progressive increases in saliva secretion
over the 11 weeks follow-up period (Figure 5b), suggesting a
significant recovery of salivary function. This result indicates
that blocking IL17 is capable of preventing development
of SS when carried out before onset of disease, and even
restoring normal salivary function when carried out at a later
stage of the disease.

DISCUSSION
The TH17-derived IL17 (IL17A) cytokine is a potent
inflammatory cytokine that has been implicated in a growing
list of autoimmune diseases, for example multiple sclerosis,
Crohn’s disease, rheumatoid arthritis, psoriasis, systemic
lupus erythematosus, and SS, as well as autoimmunity in
animal models.3 The consequence of TH17/IL17 activation
includes, in addition to the production, the IL17 family of

Figure 2 Number of splenic IL17þCD4þ cells. Spleen cells at 7 weeks old mice (1 week before vector treatment), 27 weeks old mice (19 weeks post-vector

treatment) (early treatment, a–c), 16 weeks old mice (1 week before vector treatment), and 29 weeks old mice (12 weeks post-vector treatment)

(late treatment, d–f). The data shown are representative of three independent experiments with n¼ 2 at each experiment.
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cytokines, the production of IL21, IL22, chemokines (MIP-2,
CXCL1, CXCL2, CXCL5), and matrix metalloproteases
(MMP3 and MMP13),16 all actively involved in tissue

inflammation. Interaction of the IL17 with its receptors
evokes activation of CXCL8, resulting in recruitment of
neutrophils to the site of injury. Thus, IL17 has emerged as
an ideal therapeutic target for autoimmune disease. In this
study, we sought to examine the effect(s) of inhibiting IL17
on SS development using an adenoviral vector in a mouse
model of SS. The results suggest that inhibiting IL17 at early
disease stage can prevent the onset of SS development,
specifically the absence of lymphocytic infiltration in the
salivary glands, retention of normal ANA profiles, and no
loss in saliva secretion. Likewise, inhibiting IL17 at a later
disease stage could rescue salivary gland function by
ameliorating lymphocytic infiltrations, normalizing ANA
profiles, and more importantly recovering saliva secretion.

The design of this study has taken advantage of several
important observations: (1) the temporal disease profile
of SSS C57BL/6.NOD-Aec1Aec2 mice is well defined at both

Figure 3 Histological analyses of salivary glands. Examination of the salivary glands in mice cannulated at 8 weeks or indicated ‘early treatment’

(n¼ 15) (a–f) or 17 weeks of age or indicated ‘late treatment’ (n¼ 18) (g–l) with either Ad5-LacZ or Ad5-IL17R:Fc vectors at 107 viral particles per gland.

Black arrows indicate representative lymphocytic infiltrate in H&E sections (a, d, g, j), immunofluorescent staining for CD3þ T and B220þ B cells (b, h),

and immunohistochemical staining for IL17 cells (c, e, i, k). Isotype control for IL17 antibody was performed with rabbit IgG (f, l). Images were taken

at � 200 magnification at constant exposure of 0.3 s using Zeiss Axiovert 200M microscope (Carl Zeiss).

Table 1 Quantification of lymphocytic foci (LF) in salivary
glands

Ad5-LacZ Ad5-IL17R:Fc

No LF LF Mean LF No LF LF Mean LF

Early*** 1a (17%)b 5 (83%) 3.6±0.6c 6 (67%) 3 (33%) 1±0.0

Late*** 1 (17%) 5 (83%) 3.6±0.9 10 (83%) 2 (17%) 1±0.0

***Po0.001: comparison of mean LF of Ad5-LacZ vs Ad5-IL17R:Fc.
a
Number of mice.
b
Percentage of mice.

c
Mean number of LF±SEM per histological salivary gland section.
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the genetic and pathological levels,1,2 (2) histological ex-
aminations of salivary gland biopsies from both SS patients
and C57BL/6.NOD-Aec1Aec2 mice indicate the presence of
the IL23/TH17/IL17 system within LF, whereas plasma IL17
levels in SS patients correlate with the disease state,8 and (3)
retrograde cannulation of the salivary glands in mice through
the submandibular ducts can be used to deliver viral vectors
encoding recombinant proteins.27–29 Cannulations were
carried out at two different ages corresponding to time points
of expected early-stage (6–8 weeks of age) and later-stage
(15–17 weeks of age) pathogenesis. The later-stage studies

were carried out based on the fact that C57BL/6.NOD-
Aec1Aec2 mice still have intact glands and partial salivary
flow rates. With this design, we have been able to examine the
direct effect of IL17 blockage as a therapeutic target in
preventing either development or onset of SS. A possible
weakness in the present design to be considered is the use
of the Ad5-based vector system known to express the
recombinant protein for a relatively shorter defined
time span,32,33 and, therefore, possibly only transient
immunological functions. Interestingly, as presented in this
study, the effect of the Ad5 vector using IL17R:Fc was quite

Figure 4 Identification of ANA. Representative patterns of cellular staining of HEp2 cells by sera diluted 1/40 prepared from mice cannulated with

Ad5-LacZ or Ad5-IL17R:Fc vectors at 8 weeks of age (early treatment) (a–c), and 17 weeks of age (late treatment) (d–f). Sera were collected 1 week before

cannulation (a, d) and at indicated times of euthanization (b, c, e, f) for both vector-treated groups. ANA in sera was tested using HEp2 cells substrate.

Representative patterns were determined with n¼ 3 for each time point presented.

Figure 5 Secretory function of salivary glands. Saliva collected at 7 or 1 week before cannulation (baseline), 11 and 26 weeks of age (Ad5-LacZ,

n¼ 6 and Ad5-IL17R:Fc, n¼ 8) (a), and 16 or 1 week before cannulation, 20 and 28 weeks of age (Ad5-LacZ, n¼ 9 and Ad5-IL17R:Fc, n¼ 10) (b).

Statistical analysis was used to determine the significance between the Ad5-LacZ- and Ad5-IL17R:Fc-treated mice at each time point. (NS, not significant,

P¼ *o0.05, P¼ **o0.01, P¼ ***o0.001).
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stable up to 19 weeks post-treatment, possibly contributed by
the stability of the receptor portion, which can be enhanced
and prolonged because of the Fc protein fusion. Numerous
studies have shown that Fc fusion proteins extend the serum
half-life of the partner protein, limit renal clearance, and
significantly promote protein secretion with high expres-
sion.34 Furthermore, even though adenoviral vectors are
capable of inducing immunological responses,35,36 the low-
dosage treatment (107 viral particles per salivary gland) used
in this study was well tolerated and do not elicit any ob-
servable side effects.

In addition to the longer duration or persistence of the
Ad5 vector in the cannulated mice, the effect of the vectors
appears to be systemic, as defined by changes observed in
both sera and spleens of the Ad5-IL17R:Fc-treated mice. Even
though SS targets primarily the exocrine glands, specifically
the salivary and lacrimal glands, the pathology can be sys-
temic thereby affecting multiple organs. Extensive studies by
Bruce Baum’s laboratory have provided significant evidence
into the systemic effect of the adenovirus transduction.37–40

As shown by Adesanya et al,31 retrograde salivary gland
cannulation at high vector dose can injure acinar cells, which
likely compromise the integrity of the mucosal barrier
allowing for leakage of the vector systemically. Further
studies by Kagami et al39 and He et al41 provide evidence that
ductal cannulation of salivary glands can result in systemic
effects because of the secretory nature of the salivary glands,
which are well endowed with protein synthesis organelles and
secretory machinery. As observed in this study, the systemic
spread of the vector is quite expected and promising

Our studies have indicated that generation of LF in the
salivary glands1 requires an intricate and synchronized action
between TH1, TH2, and TH1 7 cells. Study by Jonsson et al42

has indicated that some LF form germinal center-like struc-
tures and that the appearance of such structures correlate
with a more severe disease and higher production of auto-
antibodies in human patients. We have shown that the initial
infiltrating cells are TH1 cells producing IFN-g, which directly
mediates the up-regulation of adhesion molecules, conse-
quently recruiting inflammatory cells such as TH2 and TH17
cells to the glands. The destruction of the glands is suggested
to be executed by the pathogenic potential of IL17 cytokine
(Nguyen et al, unpublished data). More importantly, a recent
study24 has found that IL17 is needed to maintain the
structure and formation of GC-like organization in an au-
toimmune animal model; therefore, blocking it with Ad5-
17R:Fc vector has been shown to destroy the integrity of the
GC by the dissociation of B cell from CD4þT cells within
the follicles. Furthermore, Doreau et al43 have shown that
IL17 alone or in combination with BAFF (B cells activating
factor) can influence the survival, proliferation, and differ-
entiation of B lymphocytes and maintain the existence of
self-reactive B cells. These seminal studies clearly support our
findings in which blocking the activity of IL17 prevented the
generation of LF in the glands or dissociate the existing LF

because of the lack of survival or maintenance signals pro-
duced by IL17, and this dissipation of the LF ameliorates the
formation of self-reactive B cell, thereby eliminating the
emergence of autoreactive antibodies.

In conclusion, reduction of IL17A levels by Ad5-IL17R:Fc-
blocking vectors suppresses features of SS in SSS mice,
demonstrating the major function this cytokine has in the
development of this autoimmune disease. How this one
cytokine affects the various features of autoimmunity, and
at what level or time point, will require additional studies.
Nevertheless, the simple and relatively safe cannulation
procedure to introduce the Ad5-IL17R:Fc vector directly into
the targeted glands suggests that this intervention therapy
should be more thoroughly investigated. The promising
aspect of the present studies is that intervention at late stage
of SS can provide protection from further destruction or
recovery of salivary gland function. Longer observation is
needed to determine the long-term effect of adenoviral vec-
tors per se and IL17 at late-stage disease. The future appli-
cation of adeno-associated viral vectors, which provide a
more stable and persistent factor expression, could advance
gene therapy application to future treatment of SS.
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