
Smad3 knockout mice exhibit impaired intestinal
mucosal healing
Cheri R Owen1, Lisi Yuan1,2 and Marc D Basson1,2

Altered transforming growth factor-b (TGFb) expression may contribute to inflammatory bowel disease and modulate
epithelial cell restitution. Interference with TGFb-mediated signaling inhibits excisional skin wound healing, but accel-
erates healing of incisional cutaneous wounds and wounds in some other tissues. Therefore, we sought to clarify the
potential role of Smad3-dependent TGFb signaling in intestinal mucosal healing in Smad3 null mice. Jejunal serosal
application of filter disks saturated with 75% acetic acid yielded a circumscribed reproducible ischemic mucosal ulcer
1 day later. We compared ulcer area at 3 and 5 days to day 1 in Smad3 knockout mice and syngeneic wild-type mice, and
evaluated mucosal immunoreactivity at the ulcer edge for TGFb, phosphorylated (activated) focal adhesion kinase (pFAK),
phosphorylated extracellular signal-related kinase (pERK), proliferating cell nuclear antigen and apoptosis by TUNEL. Ulcer
healing in Smad3 null mice was 17% less at day 3 (n¼ 14, P¼ 0.022) and 15% less at day 5 (n¼ 14, P¼ 0.004) than in
wild-type littermates. In wild-type mice, pFAK, pERK and TGFb immunoreactivity were elevated in epithelium immediately
adjacent to the ulcer compared with more distant mucosa. However, this pattern of immunoreactivity for pFAK, pERK and
TGFb was not observed in Smad3 null mice. Smad3 null mice exhibited increased epithelial proliferation and no
differences in apoptotic cell death compared with wild types, suggesting that ulcer healing may reflect differences in
restitutive cell migration. Thus, Smad3-dependent disruption of the TGFb signaling pathway impairs the healing of
murine intestinal mucosal ulcers and alters patterns of activated FAK and ERK immunoreactivity important for cell
migration at the ulcer edge. These studies suggest a significant role for Smad3-dependent TGFb signaling in
intestinal mucosal healing.
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Intestinal epithelial migration, proliferation and differentia-
tion are requirements in wound healing, a process disrupted
in inflammatory bowel diseases (IBDs) such as ulcerative
colitis (UC) and Crohn’s disease (CD).1 Early in normal
healing, epithelial cells at the edge of the injury flatten out,
extend a lamellipodium and migrate across the extracellular
matrix of the mucosal defect.2 This migratory process is
called restitution, and independent of cell proliferation,
which begins later in healing, is regulated by cytokines,3

growth factors,4–7 and modulated by integrin-dependent in-
teractions between adhesion molecules and matrix compo-
nents.8,9 One of the growth factors present at the wound site,
transforming growth factor-b (TGFb) is initially derived
from accumulating platelets, but later can be overexpressed
by epithelial cells involved in repairing the injury.8 Although
TGFb potently inhibits proliferation,10,11 it promotes cell

migration.11–14 The TGFb receptors exert their effects
through a canonical Smad-dependent signal pathway and
Smad-independent signals such as the mitogen-activated
protein kinases (MAPK).9 The Smad-dependent pathway
begins when activated TGFb receptors form heterotetrameric
complexes which then recruit, phosphorylate and activate
the receptor-regulated SMADSs (R-Smads) Smad2/3 com-
plexes.15 The R-Smads are composed of Smad1, Smad2,
Smad3, Smad5 and Smad8, and when phosphorylated, these
Smads form a complex with a common mediator, Smad4.
These Smad complexes then translocate to the nucleus and
act as transcription factors important in modulating proteins
necessary for wound healing.10

Several signaling molecules are also critical in cellular
migration and wound closure and have been implicated in
the disruption of the physiologic repair system characteristic
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in IBD. Migration is dependent on the architecture of the
cytoskeleton, including focal adhesions.11 Cellular migration
of isolated human colonic lamina propria fibroblasts from
CD and UC patients is significantly reduced compared to
control cells, and this correlates with a reduction in phos-
phorylated focal adhesion kinase (FAK).12 Tumor necrosis
factor (TNF)-a is a hallmark of IBD, and inhibition of TNF-
induced FAK phosphorylation decreases intestinal epithelial
cell migration in an in vitro wound model.13 Also important
in cell migration and wound healing, the MAPK, extracellular
signal-related kinase (ERK), localizes to migrating epithelium
at induced ulcer margins in normal rat gastric mucosa.14

Alterations in the activation and expression of ERK have also
been observed in IBD. For instance, colonic mucosal biopsies
from patients with CD exhibited a threefold increase in ERK
phosphorylation as detected by western blot, but these same
samples exhibited a significant downregulation of expression
of the total ERK2 protein.16

To investigate the role of TGFb in intestinal mucosal
healing, we induced jejunal ulcers in transgenic mice with a
targeted disruption of the Smad3 gene and observed wound
closure. We looked for changes in epithelial cell proliferation
and apoptosis to determine their role, if any, in the differ-
ences in ulcer healing in these mice. In addition, we in-
vestigated how disruption in the TGFb signaling pathway
effected expression of the signaling molecules FAK and
ERK, crucial in cell migration and physiologic repair of the
intestinal mucosa.

MATERIALS AND METHODS
Transgenic Mice
All procedures involving mice were approved by our in-
stitutional Animal Investigation Committee. Smad3ex8/ex8

C57BL/6 mice were a generous gift from Dr Anita B Roberts
(NCI, National Institutes of Health, Bethesda, MD, USA).
These were generated by targeted disruption of the Smad3
gene by homologous recombination,17 bred in our labora-
tory, and verified by PCR before study (Figure 1). Male and
female wild-type and Smad3 null mice (8- to 12-week-old)
were used for this study after preliminary studies (not
shown) found no gender differences in wound healing in this
model.

Genotyping Protocol
Tail samples (4mm) were gathered from Smad3 null and
wild-type littermate mice and placed in 250 ml DirectPCR
lysis reagent (Viagen, CA, USA) for 24 h at 551C in a rotating
hybridization oven. The samples were then incubated in a
1001C water bath for 45min and 2 ml of this DNA lysate
material was used for each PCR reaction. The presence of
the Smad3 allele was detected by primers Smad3-1 (50-CCAC
TTCATTGCCATATGCCCTG-30) and Smad3-3 (50-CCAG
ACTGCCTTGGGAAAAGC-30), and produced a 250 bp
fragment. The presence of the wild-type allele was detected
using Smad3-1 (50-CCACTTCATTGCCATATGCCCTG-30)
and Smad3-2 (50-CCCGAACAGTTGGATTCACACA-30), and
produced a 400 bp fragment (Figure 1).

Ulcer Induction
Smad3 null and wild-type littermates were anesthetized with
intraperitoneal ketamine (100mg/kg) and xylazene (10mg/
kg), and a laparotomy was performed to expose the jejunum.
Adapting a model previously used to create gastric ulcers,18

we created jejunal ulcers by placing a 75% acetic acid-
saturated circular filter disk (1.77mm2) directly on the
antimesenteric serosa for 15 s, without opening the bowel.
Large blood vessels were avoided in disk placement. Initial
ulcer measurements were taken from killed mice 1 day after
induction. To determine healing rates, we compared ulcer
sizes in mice killed at days 3 or 5 after ulcer induction to their
day 1 counterparts.

Ulcer Healing Measurements
After killing, jejunal samples containing the ulcers were
harvested and fixed in 10% formalin for 24 h. The jejunal
segments were incised along the mesenteric border (opposite
the side containing the ulcer) and pinned open on dental wax
in PBS to photograph the mucosal surface of the ulcer using a
dissecting microscope fitted with a digital camera. The
images were then analyzed with Kodak 1D Image Analysis
software (Eastman Kodak Company, NY, USA) to determine
ulcer area. Ulcer healing was calculated as percent closure of
ulcer area at days 3 and 5 compared to the mean ulcer area of
a parallel series of ulcers measured at day 1.

Histology, Immunohistochemistry, PCNA, TUNEL and
Image Analysis
Jejunal samples containing the ulcers that were 5 day post-
induction were fixed in 10% formalin for 24 h and embedded
in paraffin. Sections (5 mm) through the area of the ulcer
were placed on slides and deparaffinized, rehydrated and
utilized for various experiments. Changes in TGFb expres-
sion and cell signaling at the ulcer edge were determined by
subjecting the ulcer sections to immunohistochemistry with
antibodies directed against TGFb (R&D Systems, MN,
USA), pFAK397 (BD Biosciences, CA, USA), phosphorylated
extracellular signal-related kinase (pERK; Cell Signaling,
MA, USA) and isotype control (Sigma, MO, USA), used at a

Figure 1 PCR products of tail lysates taken from wild-type, heterozygous

and Smad3 null mice. The wild-type allele produces a 250 bp fragment,

whereas the Smad3 mutant allele produces a 400-bp fragment. The

presence of both fragments in the middle lane denotes a heterozygous

mouse, which was not used in this study.
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dilution of 1:50 in PBS followed by Vectastain Universal ABC
kit detection (Vector Labs, CA, USA). Alterations in pro-
liferation were detected utilizing a proliferating cell nuclear
antigen (PCNA) kit (Zymed, CA, USA), and apoptosis
detection was accomplished by TUNEL staining (Calbiochem,
CA, USA). Sections were counterstained with hematoxylin
for histological orientation in the immunohisto-
chemical samples and PCNA, or methyl green for TUNEL,
coverslipped, visualized and photographed on a Nikon
Microphot-FXA.

Statistical Analysis
Immunohistochemical results were scored on a scale of 0–4
with 0 being the least amount of detectable positive staining
and 4 being the highest positive staining. The score mode and
range are listed in Table 1. Scores were analyzed by w2-test for
significance at Po0.001. The remaining data were expressed
as mean±s.e. Statistical analysis was performed using paired
or unpaired t-tests or ANOVA as appropriate. A P-value of
o0.05 was considered significant.

RESULTS
Disruption of Smad3-Dependent TGFb Signaling Impairs
Intestinal Ulcer Healing
Mice were genotyped at postnatal day 10–14 (Figure 1) and
subjected to ulcer induction between 8 and 12 weeks of age.
The mice were killed at 3 or 5 days after induction of in-
testinal ulcers with acetic acid, and ulcer area from Smad3
null and wild-type littermates were compared to the mean
ulcer area in wild-type and Smad3 null mice operated on in
parallel but killed at day 1. Digital photographs of the mu-
cosal surface of the ulcers (Figure 2) analyzed with Kodak 1D
image analysis software demonstrated that ulcer healing
in Smad3 null mice was 17±4.4% less than wild-type

littermates at 3 days post-ulcer induction (n¼ 14, P¼ 0.022),
and 15±2.3% less at 5 days post-induction (n¼ 14,
P¼ 0.004; Figure 3). Thus, disruption of the TGFb signaling
pathway in mice by a targeted deletion of the Smad3 gene
resulted in impaired intestinal mucosal healing.

Our model of serosal application of acetic acid to induce
intestinal mucosal ulcers resulted, histologically, in a dis-
ruption of underlying matrix and smooth muscle structure at
the location of the ulcer. This phenomenon did not resolve by
day 5 after ulcers were induced (Figure 4).

Impaired Intestinal Epithelial Healing in Smad3 Mice Is
not Due to a Decrease in Proliferation or an Increase in
Apoptosis
We next evaluated the possibility that alterations in intestinal
epithelial healing in Smad3 null mice might reflect changes in
proliferation or apoptosis. To detect changes in proliferation
between wild-type and Smad3 mice, ulcer sections from 5

Table 1 Immunohistochemistry scores comparing staining
intensity immediately adjacent to the ulcer or distant from
the ulcer site

Protein Mode/range

Wild type Smad3 null

Immediate Distant Immediate Distant

TGFb 3/2–4 1/0–2 1/0–2 1/0–2

pERK 3/2–4 0/0–2 1/0–3 1/0–2

tERK 2/1–3 2/1–3 2/1–3 2/1–3

pFAK 4/2–4 1/0–2 2/1–3 1/0–2

tFAK 2/0–2 1/0–3 2/1–3 1/0–3

TGFb, transforming growth factor-b; pERK, phosphorylated extracellular signal-
related kinase; tERK, total extracellular signal-related kinase; pFAK, phos-
phorylated focal adhesion kinase; tFAK, total focal adhesion kinase.

All comparisons Po0.001 by w2-analysis.

Figure 2 Representative digital photographs of ulcers on the mucosal

surface of the jejunum at day 1 in wild-type mice and 5 days after ulcer

induction by serosal acetic acid application in wild-type and Smad3

null mice. These images reflect the diminished ability of the intestinal

mucosa to heal acetic acid-induced ulcers in Smad3 null mice. Original

magnification, � 7.5.

Figure 3 Ulcer healing in Smad3 null mice and wild-type littermates at 3

and 5 days post-ulcer induction. Smad3 null mice demonstrated 17% less

wound healing at day 3 post-induction (n¼ 14, P¼ 0.022), and 15% less

wound healing at day 5 after ulcer induction (n¼ 14, P¼ 0.004) compared

to day 1.
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day-post ulcer induction were immunostained with an
antibody against PCNA, a protein produced during late G1 and
S phase of the cell cycle and a common marker for pro-
liferating cells.19 Quantification demonstrated a 9.46%±0.1
(n¼ 5, Po0.001) increase in PCNA-positive intestinal mu-
cosa epithelial cells within 3mm adjacent to the ulcer in
Smad3 mice compared to wild-type mice (Figure 5). This
suggested that the diminished rate of ulcer healing in the
Smad3 knockout mouse was not due to a decrease in pro-
liferating epithelial cells at the ulcer edge.

As the balance between proliferation and apoptosis is
critical to maintaining the integrity of the intestinal mucosa,
we investigated whether apoptotic changes could have con-

tributed to the decrease in ulcer healing observed in the
Smad3 null mice. TUNEL assay, which recognizes exposed
ends of DNA fragments, revealed no detectable increase in
the number of apoptotic cells in Smad3 null mice compared
to wild-type (Figures 6a and b). Quantification indicated less
than 1% change in apoptosis in Smad3 null mice compared
to wild type (data not shown). Positive control was a mixture
of HL60 cells previously incubated with actinomycin D
(Figure 6c). Negative control was mouse wild-type ulcer
tissue with TdT enzyme omitted from staining protocol
(Figure 6d). This finding suggested that the inhibition of
ulcer healing in the Smad3 null mouse was not due to an
increase in apoptosis at the ulcer margin.

Figure 4 H&E-stained sections of intestinal ulcers in a wild-type and Smad3 null mice at days 1, 3 and 5 after ulcer induction. Normal matrix and smooth

muscle layers are observed distant from the ulcer. Disrupted matrix and smooth muscle layers are observed at the location of the ulcer (U). Original

magnification � 40.
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TGFb Immunoreactivity is Reduced at the Leading Edge
of Migrating Epithelial Cells in Intestinal Mucosal Ulcers
in Smad3 Null Mice
Previous evidence of the presence of TGFb at wound sites
and its role in cell migration led us to investigate the loca-
lization of TGFb at the leading edge of epithelial migration
in intestinal mucosal ulcers. TGFb immunoreactivity was
readily apparent in 5 day-post ulcer induction samples at the
immediate edge of the ulcer border in epithelial cells and also
somewhat present in the submucosa further away from the
ulcer in wild-type mice (Figure 7a). Immunohistochemical
assessment demonstrated that the increased TGFb staining
observed at the immediate edge of the ulcer in wild-type mice
differed significantly compared to more distant mucosa
(Table 1; n¼ 20, Po0.001). This pattern of expression was
not seen in the Smad3 null mice, where there was no sig-
nificant difference between TGFb staining at the ulcer edge
and more distant mucosa (Figure 7b; Table 1; n¼ 16,
P¼ 0.7), raising the possibility that the reduction in ulcer
healing observed in the knockout mice might reflect changes

in TGFb expression and non-Smad signaling at the edge of
the ulcer.

Signaling Molecules Crucial for Cellular Migration are
Altered at the Ulcer Edge in Mice Deficient in Smad3
The diminished ability of the intestinal mucosa to heal in
Smad3 null mice led us to investigate two of the intracellular
signaling events that might contribute to mucosal healing.
Cell migration is the first in a series of steps that lead to
wound closure, and we investigated two signaling molecules
important in this process. There was a significant increase
in immunoreactivity for phosphorylated (activated) Focal
Adhesion Kinase (pFAK) in migratory epithelial cells at
the immediate ulcer edge (arrow) from 5 day-post ulcer

Figure 5 Paraffin sections immunostained with proliferating cell nuclear

antigen (PCNA) from jejunal ulcers 5 days after induction in wild-type

(a) and Smad3 null (b) mice demonstrate more proliferating epithelial

cells in intestinal mucosa epithelium in the Smad3 null mice (n¼ 5,

Po0.001). Sections are counterstained with hematoxylin. Original

magnification, � 400.

Figure 6 TdT staining of 5-day ulcers (U) in wild-type (a) and Smad3 null

mice (b). Smad3 null mice exhibited no detectable changes in TUNEL-

positive cells in migrating epithelial cells compared with wild-type mice.

Positive control slide was a mixture of HL60 cells treated with actinomycin

D (c). Negative control slide was wild-type mouse ulcer tissue with TdT

enzyme omitted from staining protocol (d). Sections are counterstained

with methyl green. Original magnification, � 200.

Figure 7 Paraffin sections of ulcers from wild-type and Smad3 null mice 5

days after induction immunostained for transforming growth factor-b
(TGFb). (a) Isotype control. TGFb was present at the ulcer edge in wild-type

mice and also in the submucosa further away (b), but this pattern of

expression was not seen in Smad3 null mouse ulcers (c). Arrows point to

the epithelium at the edge of the ulcer (U). Sections are counterstained

with hematoxylin. Original magnification, � 400.
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induction samples compared to the more distant mucosa in
wild-type mice (Figure 8a; Table 1; n¼ 12, P¼ 0.001).
However, we were not able to detect this pattern of pFAK
immunoreactivity in the epithelial cells at the ulcer edge
(arrow) in Smad3 null mice and there was not a significant
difference in immunoreactivity between the two areas in the
Smad3 null mice (Figure 8b; Table 1; n¼ 12, P¼ 0.25).
Immunohistochemical analysis of total FAK in the two areas
of the mouse intestinal mucosa revealed no significant
difference in either wild type or Smad3 null tissue (n¼ 16 in
both, wild type P¼ 0.47, Smad3 null P¼ 0.34). This
suggested that although FAK protein was present throughout
the mucosal tissue in both wild-type and Smad3 null mice
subjected to ulcers, phosphorylation of FAK was diminished
at the ulcer edge only in the knockout mice.

Activation of ERK has previously been shown to drama-
tically increase up to ninefold in gastric ulcers during
the initial healing period between 3 and 7 days.20 pERK
immunoreactivity was detected at day 5 by immuno-
histochemistry in our ulcer model and was found to localize
in the migrating mucosal epithelium immediately adjacent to
the ulcer (arrow), but was not abundant in more distant
mucosa in wild-type mice (Figure 9a; Table 1; n¼ 20,
Po0.001). As with the phosphorylated FAK, the pERK was
not significantly different between the area immediately
adjacent to the ulcer (arrow) and more distant mucosa in
Smad3 null mice (Figure 9b; Table 1; n¼ 17, P¼ 0.24). Im-
munohistochemical assessment of total ERK in the two areas
of the mouse intestinal mucosa revealed no significant
difference between the two areas in either wild type or Smad3
null tissue (Table 1; wild-type n¼ 22 P¼ 0.29, Smad3 null
n¼ 19 P¼ 0.52). These results suggest that the phosphor-
ylation event that occurs for ERK at the ulcer margin in
wild-type mouse mucosa is impaired in Smad3 null mice.

DISCUSSION
Intestinal mucosal ulcer healing was inhibited in transgenic
mice with a Smad3-dependent block of the TGFb pathway.

There was no evidence of an increase in apoptotic epithelial
cells adjacent to intestinal ulcers in Smad3 knockout mice.
However, interestingly, we observed increased proliferation in
these cells. The slower mucosal wound healing in these mice
despite increased proliferation may reflect differences in
epithelial cell migration. TGFb immunoreactivity was in-
creased in epithelial cells at the ulcer edge in wild-type mice,
but not in Smad3 null mice. pFAK and ERK were also
detected in migrating epithelial cells at the ulcer edge in the
wild-type mice, but were below the limits of detection in
epithelium surrounding ulcers. Loss of TGFb, pFAK and
pERK signaling in epithelial cells at the leading edge of in-
testinal ulcers could contribute to the reduction of ulcer
healing in these mice.

The magnitude of ulcer healing we observed in our model
is consistent with previously reported investigations. Acetic
acid-induced gastric ulcers in rats treated with L-cysteine
were 28% smaller than vehicle-treated ulcers, and conversely,
ulcers treated with a hydrogen sulfide synthesis inhibitor
demonstrated the same magnitude of delayed healing.21

Wild-type mice treated with either 1M NaCl or capsaicin as a
protective agent against ethanol-induced gastric ulcers de-
monstrated increased healing rates of 10 and 12%, respec-
tively compared with saline-treated ulcers.22 These relatively
small changes in healing might be biologically important in
real mucosal healing because they might tip the balance be-
tween healing and nonhealing in the setting of continued
reinjury by luminal noxious agents.

Although other models of mucosal injury have been uti-
lized to demonstrate alterations in healing, including dextran
sodium sulfate (DSS) model of colitis, we chose serosal
application of acetic acid to induce ulcers. This model of
mucosal injury was appropriate for its reproducibility and
consistent initial ulcer size at day 1 that facilitated quanti-
tation of the size of a specific isolated mucosal ulceration.
This model also seemed to cause fewer side effects than have
been described by others in the DSS model.23 We observed no
diarrhea, no noticeable weight loss, no gross bleeding and no

Figure 8 Immunohistochemical detection of phosphorylated focal

adhesion kinase (pFAK) in intestinal epithelial cells (arrows) adjacent to

ulcers (U) from wild-type and Smad3 null mice. pFAK was detected at the

leading edge of epithelial cell migration in wild-type mice (a), but was not

detectable in this area in Smad3 null mice (b). Sections are counterstained

with hematoxylin. Original magnification, � 400.

Figure 9 Immunohistochemical detection of phosphorylated extracellular

signal-related kinase (pERK) in intestinal epithelial cells adjacent to ulcers

(U) from wild-type and Smad3 null mice. (a) pERK is detected at the leading

edge (arrows) of epithelial cell migration in wild-type mice, but was no

detectable in this area in Smad3 null mice (b). Sections are counterstained

with hematoxylin. Original magnification, � 400.
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rectal prolapse. Such systemic aberrations could themselves
lead to pathophysiologic neurohumoral or hemodynamic
changes that could affect mucosal healing and conceivably
might even have different consequences in the setting of a
Smad3 knockout.

Epithelial proliferation begins within 3 days of ulcera-
tion.18,16 TGFb arrests epithelial proliferation at G1.

24 The
loss of TGFb at the ulcer edge in Smad3 null mice may then
explain the increased proliferation near ulcers in Smad3 null
mice compared to wild-type mice. Although excisional ear
wounds in Smad3 null mice that heal more slowly also ex-
hibit increased apoptosis,25 we observed very little apoptosis
in the epithelial cells near the ulcer in wild type and Smad3
null mice. This apparent inconsistency may reflect differences
in tissue or mechanism of injury between that previous study
and this one. Although increased apoptosis could impair ear
excisional wound healing in Smad3 null mice, the increased
mucosal proliferation and similarly low apoptosis suggested
slower enterocyte migration as an alternative mechanism for
delayed ulcer healing in Smad3 nulls.

Growth factors produced at ulcers by epithelial or
inflammatory cells modulate migration as well as
proliferation.16,26,27 The unregulated immune response and
chronic inflammation of IBD has been attributed in part to
alterations in growth factors like TGFb.28 Lamina propria
mononuclear cells and T cells from patients with IBD exhibit
variable levels of TGFb1, depending on the disorder.29 Dis-
ruption of TGFb results in either a severe inflammatory
response followed by early death or 100% lethality in
mice.30–34 TGFb receptor resistance may also contribute to
IBD.35–37 Although we did not investigate TGFb receptor
expression in this model of intestinal ulceration, factors that
affect receptor expression could also influence mucosal
healing as TGFb expression has been implicated in immuno-
regulation, matrix deposition and inhibition of proteolytic
enzymes in intestinal repair, and TGFb receptor II knockout
mice demonstrate increased susceptibility to IBD.37 Our
observations suggest that disruption of TGFb signaling by
Smad3 knockout impairs epithelial migration. Although
TGFb inhibits intestinal epithelial proliferation, it conversely
promotes migration in vitro,38,39 and in vivo.40 TGFb
inactivation with a neutralizing antibody in mice decreases
reepithelialization,40 and mice expressing a dominant-negative
TGFb RII in the intestinal epithelium are more susceptible to
injury and heal more slowly in a colitis model.41 Interestingly,
TGFb levels are higher in Smad3 null mice,42,43 possibly due
to mucosal T cells or platelet degranulation.43 Despite the
increased TGFb, ear punch wounds in Smad3 null mice
exhibit decreased TGFb immunoreactivity at the wound
edge,25 consistent with our present observations. Together,
this evidence suggests that TGFb acts at the injury site to
promote cell migration in intestinal ulcer healing.

The effects of transgenic knockouts that disrupt TGFb
signaling vary with the tissue and model studied.44–46 Smad3
null mice exhibit accelerated healing in some other tissues,

including brain,47 skin25 and tail.48 Tokumasa reported that
Smad3 knockout mice also heal experimental colitis more
rapidly, but only heterozygous animals were utilized for the
study.49 Our observations (not shown) of ulcer healing in
heterozygous Smad3 mice were variable and inconsistent,
leading us to study the more clearly defined homozygous
knockouts. In contrast to Tokumasa’s report, but consistent
with our own results, excisional ear wounds in Smad3 null
mice heal more slowly.25 Differences in tissue, wound type
and mechanism of injury may explain these apparent
inconsistencies. Excisional wounds, such as ear punches or
ulcers, exhibit absence or abnormalities of underlying matrix,
support cells and vascular components. The matrix and cells
across which restitutive cell motility must occur critically
regulate migration.

Altered matrix proteins and structure have been described
in Smad3 null mice,25,43,47 consistent with observations that
TGFb modulates matrix synthesis in vivo.50 In contrast to
skin or brain, the intestine is subjected to complex repetitive
forces due to peristalsis and interaction with luminal con-
tents. Colonic contractility decreases in both animal models
of colitis and in humans with IBD.44–46,51 The healing of
wounds in intestinal epithelial cell monolayers in vitro is
modulated by repetitive deformation in a matrix-dependent
manner.52 Disruption of intestinal deformation, and altera-
tions of muscle structure and matrix organization in an ex-
cisional type wound, could alter healing.

In addition to alterations in TGFb expression and matrix
organization, poor healing in IBD has been linked to changes
in cell signaling related to cell motility. Changes in FAK have
been documented in in vitro models of intestinal epithelial
migration,53 including at the leading edge during cell
migration in monolayer wounds.54 Inhibition with a
dominant-negative FAK construct55 or siRNA56 significantly
inhibits cell migration in vitro. In contrast, some studies have
shown decreases in pFAK that coincide with increased wound
healing and vice versa.53,55,56 Total and pFAK are decreased at
the migrating front of human Caco-2 and rat IEC-6 mono-
layer wounds.57 This apparent discrepancy in FAK localiza-
tion during cell migration and effect on wound healing may
be due to several factors. Acetic acid-induced intestinal ulcers
in mice are vastly different from in vitro monolayer wounds.
Indeed, one study found discrepancies in cell signaling
and apoptosis in both in vivo wound healing in mice with
keratinocyte-specific deletion of FAK and in vitro migration
of FAK null keratinocytes in culture.58 Cells in culture lose
paracrine interactions with other cell types. In addition,
humoral, neural and angiogenic influences are present in vivo
but not in cell culture.

We also found abnormalities in pERK immunoreactivity
in the mucosa of Smad3 knockout mice. ERK mediates
intestinal epithelial cytokine production by IL-1 that is
important in IBD.59 Although levels of phosphorylated
ERK1/2 are increased in mucosal biopsies from IBD patients,
the overall level of ERK expression is significantly down-
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regulated.60 In addition, localization of activated ERK at the
wound margin is important for cell migration necessary for
healing.52,61 ERK inhibition in vitro inhibits migration on
collagen55 and fibronectin,52 and ERK phosphorylation levels
have been shown to directly correlate with the rate of cell
migration.62 We know that signals important for cell mi-
gration are altered in Smad3 null mice.25 Smad3-deficient
MEF’s display reduced TGFb-mediated activation of the ERK
MAPK pathway.63 ERK and Smad3 directly effect each other’s
phosphorylation after TGFb pathway activation,64 and
mediate TGFb-induced release of connective tissue growth
factor,65 and this cross talk may be disrupted in Smad3
null mice.

In summary, disruption of the Smad3-dependent branch
of the TGFb signal pathway inhibits intestinal ulcer healing in
Smad3 null transgenic mice, independently of observable
changes in apoptosis and despite increased proliferation. The
marked loss of TGFb, pFAK and pERK at the ulcer margin in
Smad3 null mice may contribute to this effect. These results
suggest that the Smad3-dependent branch of the TGFb signal
pathway is crucial for restititutive cell migration in intestinal
mucosal healing.
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