
The acute cutaneous inflammatory response is
attenuated in Slug-knockout mice
Kimberly M Newkirk1, F Jason Duncan2, Erin M Brannick1, Heather L Chandler3, Allison E Parent1 and
Donna F Kusewitt1

We previously reported ultraviolet radiation (UVR) induction of Slug, a Snail family zinc-finger transcription factor, in the
epidermis of mice; we now report that Slug-knockout mice are, unexpectedly, more resistant to sunburn than wild-type
mice. There was a marked difference between the cutaneous inflammatory response in the skin of Slug-knockout and
wild-type mice from 12 h to 1 week following a single exposure to 3 minimal erythemal doses of UVR. Slug-knockout mice
showed a much reduced immediate increase in skin thickness and neutrophil infiltration compared to wild-type mice.
However, there were as many or more intraepidermal T cells, dermal mast cells, and dermal blood vessels in the UVR-
exposed skin of Slug-knockout mice as in the skin of wild-type mice. Differences in cytokine and chemokine expression
following UVR appeared to account for at least some differences between the genotypes in cutaneous inflammatory
response. Despite the reported antiapoptotic and antiproliferative role for Slug in some cell types, we observed little
difference between the genotypes in UVR-induced keratinocyte apoptosis or proliferation. Our findings indicate an
unexpected but important role for Slug in the acute cutaneous inflammatory response to UVR.
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Slug (Snai2) belongs to the Snail family of transcription
factors and is known to modulate epithelial–mesenchymal
transformation (EMT), which is characterized by the trans-
formation of anchored epithelial cells into migratory cells
with a fibroblastic phenotype.1 EMT occurs normally during
embryogenesis and is involved in neural crest cell migration
and limb bud formation.1 Changes resembling EMToccur in
the adult skin in keratinocytes at wound margins2 and in
ultraviolet radiation (UVR)-induced squamous cell carcino-
mas.3 Slug has been shown to control these EMT-like events
in adult keratinocytes in vitro, ex vivo, and in vivo.2 Slug also
appears to play an important role in skin homeostasis, as
indicated by Slug expression in normal adult epidermis4 and
by substantial differences in basal gene expression between
Slug-knockout and wild-type epidermis.5

The initial response of the skin to UVR is vasodilation of
cutaneous blood vessels resulting in erythema and edema.
This is closely followed by keratinocyte apoptosis and in-
flammatory cell infiltration.6 The magnitude and time course
of these events depend upon the wavelengths and dose of

UVR delivered. We previously demonstrated dose-dependent
UVR induction of Slug in keratinocytes.3 In addition, by
identifying altered expression of various immunomodulatory
factors in the untreated epidermis of Slug null mice, we were
the first to suggest a potential role for Slug in the epidermal
inflammatory response.5 In the present report, we document
a marked difference between the inflammatory response of
Slug-knockout and wild-type skin to UVR and provide evi-
dence that this difference can be attributed, at least in part, to
differences in the production of immunomodulatory factors
by UVR-exposed epidermis.

MATERIALS AND METHODS
UVR Exposure of Mice
The mice used in this study were wild-type mice and
homozygous Slug-knockout mice on an inbred 129 back-
ground (129S1/SvImJ). Mice employed in these studies were
generated and initially described by Dr Thomas Gridley
(Jackson Laboratory, Bar Harbor, ME, USA).7 In these mice,
the zinc-finger region of the Slug gene has been replaced by a
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b-galactosidase gene, resulting in the production of a Slug-b-
galactosidase fusion protein (Snai2lacZ).7 The Slug portion of
this protein is non-functional, as it lacks the zinc-finger
region; however, the b-galactosidase portion of the protein is
fully functional. Two female and one male 10- to 12-week-old
mice of each genotype comprised each group, except the 12
and 24 h time points, which had six female mice and one
male mouse per group.

UVR was obtained from Kodacel-filtered Westinghouse
FS-40 lamps that emitted wavelengths between 280 and
400 nm with a peak at 313 nm (primarily UV-B). Based on
determinations of skin thickness, 1600 J/m2 represented 1
minimal erythemal dose (MED). For UVR exposures, the
mice were shaved with electric clippers and depilated using
Nair hair remover. Forty-eight hours later, the skin thickness
of each mouse was measured. Skin thickness was determined
by measuring the thickness of a skin tent with digital calipers
in three different areas of the back; these individual values
were then averaged. The entire mouse was then exposed to
3MED of UVR. At 12, 24, 48, 72, and 96 h and 1 week
post-UVR, skin thickness measurements were obtained
immediately before carbon dioxide asphyxiation. After
euthanasia, samples of skin were frozen in liquid nitrogen for
RNA isolation and myeloperoxidase (MPO) measurement,
and fixed in 10% neutral buffered formalin for histologic
analysis. Given that the Slug-knockout mice are born at lower
than the expected frequency, Slug-knockout mice and their
age- and sex-matched wild-type counterparts were exposed
as they became available, such that not all the exposures
occurred concurrently.

Histology and Immunohistochemistry
Formalin-fixed samples were embedded in paraffin, sectioned
at 4–5 mm thickness, and stained with hematoxylin and eosin.
Neutrophil counts were obtained by counting the number of
segmented nuclei in six different � 400 fields of dermis.
Neutrophils in epidermal pustules and areas of dermal ne-
crosis were excluded. Acid fast staining8 was used to identify
dermal mast cells. Mast cell counts were obtained by
counting the number of mast cells in six different � 400
fields of dermis.

Immunohistochemistry was performed as follows for
cleaved caspase 3, CD3, and Ki-67 antigens: slides were
deparaffinized and rehydrated. Antigen retrieval was performed
with DakoCytomation Target Retrieval Solution (Dako North
America Inc., Carpinteria, CA, USA) and the Biocare Digital
Decloaking Chamber (Biocare Medical, Concord, CA, USA)
by heating under pressure to 1251C for 30 s followed by
cooling in the chamber to 901C and on the bench top for
10min. Immunohistochemical staining was carried out using
the Dako Autostainer. Slides were rinsed with water, and then
treated for 5min with 3% hydrogen peroxide and with
protein block (DakoCytomation Serum-free Protein Block,
Dako North America, Inc.) for 10min. Slides were incubated
for 30min with primary antibody diluted in DakoCytomation

Antibody Diluent with Background Reducing Components
(Dako North America Inc.). Slides were incubated for 30min
with secondary antibody (Vector biotinylated goat-anti-
rabbit or rabbit-anti-rat antibody; Vector Laboratories, Bur-
lingame, CA, USA) diluted 1:200 in antibody diluent and for
30min with ABC reagent (Vector RTU Vectastain Elite ABC;
Vector Laboratories). Slides were then incubated for 5min in
DakoCytomation Liquid DAB Substrate, counter-stained
with hematoxylin, dehydrated, and coverslipped. Rinses were
performed using DakoCytomation Wash Buffer (Tris-
buffered saline/Tween-20). Antibodies included rabbit
anti-cleaved caspase 3 (Cell Signaling Technology, Danvers,
MA, USA) diluted 1:200, rabbit anti-CD3 (Dako North
America Inc.) diluted 1:100, and rat anti-mouse Ki-67
diluted 1:100. Cells positive for cleaved caspase 3 or CD3 had
cytoplasmic staining, whereas cells positive for Ki-67 staining
had nuclear staining.

For immunohistochemical detection of p53, antigen re-
trieval was performed by steaming for 20min in 1� Antigen
Unmasking Solution (Vector Laboratories), followed by a
20-min cool down step. Blocking was performed with 1�
casein (Vector Laboratories) for 30min at room temperature.
Slides were incubated for 1.5 h with rabbit polyclonal
primary antibody (Novocastra Laboratories Ltd, Newcastle
upon Tyne, UK) diluted 1:300 in 1� casein, for 30min at
room temperature with the secondary antibody (LINK
Biotinylated AntiRabbit Immunoglobulins; Biogenex
Laboratories Inc., San Ramon, CA, USA), for 30min at room
temperature with detection substrate (LABEL peroxidase-
conjugated streptavidin; Biogenex Laboratories Inc.), and
DAB (DAB Peroxidase substrate kit; Vector Laboratories) for
6min at room temperature. A final distilled water rinse was
performed before counterstaining with Mayer’s hematoxylin
for 1min, dehydrating, and coverslipping. All rinses were
performed with Tris-buffered saline/Tween-20. Cells positive
for p53 had strong nuclear staining. For cleaved caspase 3,
CD3, Ki-67, and p53, positive cells were counted in the
epidermis of six different � 400 fields. In each of these fields,
the total number of epidermal cells was also counted, and the
number of immunopositive cells was expressed as the percent
of the total epidermal cells.

CD31 was detected immunohistochemically by depara-
ffinizing and rehydrating sections, blocking endogenous
peroxidase with 3% H2O2, treating with 0.06% protease 24
(Sigma, St Louis, MO, USA) for 10min at room temperature,
blocking nonspecific protein binding (TSA kit; Perkin Elmer,
Waltham, MA, USA), incubating with primary antibody (rat
anti-mouse CD31; BD Biosciences, San Jose, CA, USA)
overnight at 41C, treating with secondary antibody (bioti-
nylated rat anti-IgG; Vector Laboratories) for 30min at room
temperature, amplifying signal with biotinylated tyramide
(TSA kit; Perkin Elmer), and developing color with diami-
nobenzidine (Sigma). Primary antibody was used at a dilu-
tion of 1:400, and secondary antibody was diluted 1:200.
Blood vessels in the dermis were counted in each of six � 400
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fields, and the diameter of vessels was measured using an
ocular micrometer.

For detection of cyclobutane pyrimidine dimers (CPDs),
slides were deparaffinized and then hydrated to water.
Antigen unmasking was performed by incubating slides in
proteinase K (Qiagen DNeasy kit; Qiagen, Valencia, CA,
USA) diluted 1:300 in phosphate-buffered saline (PBS) for
25min at 371C, followed by a water rinse. Slides were then
incubated in RNase A (USB Corporation, Cleveland, OH,
USA) diluted to 5mg/ml in PBS for 20min at 371C, followed
by a PBS rinse. Blocking was performed with 3% hydrogen
peroxide for 5min. Staining was continued using the Mouse
On Mouse (MOM) kit (Vector Laboratories). Slides were
incubated with MOM blocking reagent for 1 h at room
temperature and preincubated in the MOM antibody diluent
for 5min before a 2-h room temperature incubation with
primary anti-thymidine dimer antibody (Kamiya Biomedical
Company, Seattle, WA, USA) diluted 1:50 in MOM diluent.
Secondary antibody (MOM biotinylated secondary antibody)
was applied to the slides for 10min at room temperature.
Slides were then incubated for 30min at room temperature
with detection reagent (LABEL peroxidase-conjugated
streptavidin; Biogenex Laboratories Inc.) and with DAB
(DAB peroxidase substrate kit; Vector Laboratories) for 5min
at room temperature before a final rinse with water. Slides
were counterstained with Eosin Y (diluted to 25% in 100%
ethanol) and then rinsed with 95% ethanol, dehydrated, and
coverslipped. Unless otherwise indicated, rinses were per-
formed with PBS. CPD-positive cells had strong nuclear
staining.

Myeloperoxidase Assay
For MPO analyses, two 5-mm skin punches from each mouse
were placed in 1.25ml of 0.5% hexadecyl-
trimethylammonium bromide in 50mM potassium phos-
phate buffer (pH 6.0) before homogenization. Samples were
then sonicated for 10 s, frozen in liquid nitrogen, and thawed
at 371C in a water bath; this was repeated twice. The samples
were centrifuged for 30min at 13 000 r.p.m. and the super-
natant was removed and allowed to come to room tempe-
rature. A 10 ml portion of supernatant was added to 290 ml
substrate (50mM phosphate buffer, pH 6.0, with 0.167mg/
ml o-dianisidine dihydrochloride and 0.0005% H2O2). MPO
activity was measured, using a microplate reader, at a
wavelength of 450 nm for 5min.

RNA Isolation
For RNA isolation, the epidermis was vigorously scraped
from frozen skin samples, using a scalpel blade. Samples were
placed in Trizol (Invitrogen, Carlsbad, CA, USA), then
homogenized and processed as recommended by the sup-
plier. Skin was fixed in formalin after scraping and examined
histologically to confirm that the epidermis was completely
removed. This technique isolates primarily keratinocytes
and small numbers of Langerhans cells and intraepidermal

dendritic cells that are resident in the epidermis. Wild-type
and knockout samples were processed simultaneously. High-
quality RNA was consistently isolated using this technique.

Quantitative RT-PCR
Total RNA from Slug-knockout and wild-type epidermis was
used for real-time quantitative polymerase chain reaction
(PCR). A 5 mg portion of total RNA from each mouse was
treated with DNaseI (Ambion, Austin, TX, USA), and cDNA
was produced by reverse transcription of 500 ng of this RNA
using Superscript II (Invitrogen) and oligo(dT) primers, as
directed by the manufacturer. Quantitative reverse tran-
scription-PCR (RT-PCR) was performed using Brilliant
SYBR Green QPCR mix (Stratagene, La Jolla, CA, USA) as
directed with 100 nM of each primer in an MX3000P Real-
Time PCR System (Stratagene). Fifty cycles of 941C (30 s),
601C (30 s), and 721C (30 s) were performed. RNA con-
centrations were calculated using the LinReg PCR program,
which uses four points in the best linear region of amplifi-
cation to determine starting mRNA concentration and PCR
efficiency for each sample.9 GAPDH (forward sequence:
TGATGACATCAAGAAGGTGAAC; reverse sequence: ATGG
CCTTACATGGCCTCCAAGG) was used as an internal
standard to account for efficiency of reverse transcription and
amplification. Expression values for cyclooxygenase-2 (COX-2)
(forward sequence: CCCCCACAGTCAAAGACACT; reverse
sequence: GGTTCTCAGGGATGTGAGGA) were normalized
to GAPDH values. For all analyses, three separate PCR runs
were performed and averaged.

Cytokine Array
Epidermal RNA was purified using the RNeasy kit (Qiagen),
and cRNAwas prepared and purified using the TrueLabeling-
AMP 2.0 and Array Grade cRNA Cleanup kits, respectively
(SuperArray Bioscience Corporation, Frederick, MD, USA).
Two cRNA samples from female mice for each time point
were pooled and applied to each membrane, and then
hybridized by incubating overnight at 601C. Following the
appropriate washings, detection was performed and images
were captured using a CCD camera (Kodak IS200R, Roche-
ster, NY, USA). The captured images were then analyzed
using GEArray Expression Analysis Suite software (Super-
Array Bioscience Corporation). Average spot intensity was
determined by taking the total density and dividing by the
number of pixels. Background was reduced globally; the total
density value per area within the grid but outside of grid
capture was used as the background correction value. A spot
was considered ‘absent’ if the average density of the spot was
less than 1.5 times of the mean value of the local backgrounds
of the lower 75 percentile of all non-bleeding spots. All other
spots are considered ‘present.’ All present spot intensities
were normalized to the housekeeping gene GAPDH. Three
arrays were performed for each genotype at both 12 and 24 h
post-UVR; representing a total of six female mice of each
genotype examined at each time point.
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Statistics
One-tailed Student’s t-tests were performed for statistical
evaluation of data. P-values of 0.05 or less were considered
significant.

RESULTS
Gross and Histologic Pathology
At 12, 24, and 48 h following UVR exposure, wild-type mice
had evidence of sunburn, characterized by redness, scaling,
and peeling of the skin; however, this change was rarely ob-
served in the Slug-knockout mice. By 72–96 h post-exposure,
the areas of erythema on the wild-type mice had progressed
to areas of hyperkeratosis or ulceration with serocellular crust
formation (Figure 1); similar changes were not apparent
in the knockout skin. One week following UVR exposure,
the areas of ulceration on the wild-type mice had largely
resolved.

The histologic changes following UVR exposure corre-
sponded to those observed grossly (Figure 2). At 12 h post-
exposure, there were substantial neutrophil infiltrates in the
dermis of the wild-type mice but only minimal infiltrates in
the dermis of knockout mice. At this time point, both
genotypes had minimal keratinocyte apoptosis and hyper-
keratosis. By 24 h post-exposure, there was a dense neu-
trophil infiltrate in the dermis of wild-type mice and a much
less marked dermal infiltrate in knockout mice. At 24 h post-
UVR, both genotypes had evidence of keratinocyte apoptosis,
as demonstrated by pyknotic nuclei and hypereosinophilic
cytoplasm. At this time point, minimal epidermal hyperplasia
was evident in wild-type epidermis but not knockout epi-
dermis. At 48 h following exposure, there was loss of kerati-
nocytes, as evidenced by thinning of the epidermis in both
wild-type and knockout epidermis. Changes in the skin of
wild-type mice were similar at 72 and 96 h post-exposure. At
these time points, there was considerable heterogeneity in
lesions in each mouse, with ulceration in some areas and
moderate to marked epidermal hyperplasia in other areas.
Skin from knockout mice did not display similar areas of
epidermal ulceration; instead, lesions consisted only of
minimal to mild epidermal hyperplasia throughout the epi-
dermis. One week following UVR exposure, there was
marked re-epithelialization and epidermal hyperplasia in
wild-type mice, whereas only mild to moderate epidermal
hyperplasia was observed in knockout epidermis.

DNA Damage
Despite the difference in cutaneous response to UVR,
immunohistochemical staining for CPDs at 12 and 24 h
post-exposure indicated that both wild-type and knockout
epidermis had sustained considerable DNA damage (Figure 3).
These results suggest that it was not the induction or repair
of DNA damage that differed between the genotypes, instead
it was the response to similar levels of damage that was
dissimilar.

Skin Thickness
UVR-induced dermal edema was evaluated by measuring
skin thickness. As the unexposed skin of the Slug-knockout
mice was significantly thinner than that of the wild-type mice
(0.82±0.31 vs 1.03±0.12mm, P¼ 0.021), skin thickness was
compared as the percent change compared to unexposed
skin. In all mice, skin thickness increased in response to UVR
at time points more than 24 h after exposure. Knockout mice
had consistently less thickening than wild-type mice at all
time points, and this difference was statistically significant at
early (12 and 24 h) and late (96 h and 1 week) time points
(Figure 4).

Histologically, the unexposed epidermis of the knockout
mice was significantly thinner that that of the wild-type mice,
as measured from hematoxylin- and eosin-stained sections
(7.38±0.99 vs 8.91±1.67 mm, P¼ 0.016). Based on histo-
pathology findings, the early changes in skin thickness fol-
lowing UVR appeared to represent inflammation-associated
edema, whereas later changes reflected the loss of skin flexi-
bility due to epidermal necrosis and hyperkeratosis. At 1
week after UVR exposure, the difference in skin thickness
may also have reflected epidermal hyperplasia, which was
much more prominent in wild-type than Slug-knockout skin.
We verified hyperplasia by demonstrating significantly
increased numbers of epidermal cells per unit area in wild-
type compared to Slug-knockout skin at 1 week after ex-
posure (Figure 4). However, Ki-67 staining revealed few
differences between wild-type and Slug-knockout epidermis
either before or at most time points following UVR exposure

Figure 1 Representative image of the gross appearance of skin 96 h after

exposure to 3MED of UVR. The wild-type mouse on the left has extensive

erythema and dermal edema, as well as scaling and peeling of the skin,

whereas there is only mild cutaneous erythema in the knockout mouse on

the right.
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(Figure 5). At 72 h post-exposure, there were moderately but
significantly reduced numbers of Ki-67-positive keratinocytes
in knockout skin; at 1-week post-exposure, the number
of Ki-67-positive keratinocytes was significantly greater
in knockout than that in wild-type epidermis. Thus, any

decrease in epidermal proliferation in the knockout mice seen
in the first few days after UVR exposure was apparently being
compensated for by 1 week after exposure. These findings are
consistent with our previous report of delayed expression of
keratin 6, a marker of epidermal hyperplasia, in the skin of
Slug-knockout vs wild-type mice exposed to UVR.3

Inflammation
Evaluation of the acute inflammatory response to UVR in
these mice included quantitation of the numbers of neutro-
phils, mast cells, and CD3-positive cells, as well as evaluation
of MPO activity and COX-2 mRNA expression. UVR sti-
mulated an influx of neutrophils into the dermis in both
genotypes. In the wild-type mice, this infiltrate was pro-
nounced and persistent; however, in the knockout skin, there
were consistently fewer neutrophils in the dermis at all time
points (Figure 6). The difference between dermal neutrophil
numbers in the two genotypes was significant at 12, 24, 48,
and 72 h post-UVR. MPO activity, an indicator of neutrophil
activation, was also enhanced after UVR exposure, with
values in wild-type mice significantly higher than those in
Slug-knockout mice at 12, 72, and 96 h and 1 week after UVR
exposure (Figure 6).

Significantly increased numbers of mast cells were noted in
the unexposed skin of Slug-knockout mice (13.02±4.35
dermal mast cells per � 400 field) compared to wild-type
mice (9.17±3.21 dermal mast cells per � 400 field) (Figure 7).
At 12 h post-exposure, the difference in mast cell numbers
between the two genotypes was not significant, but at 24 h
following UVR exposure, there were significantly more mast
cells in the knockout skin (11.26±3.99 dermal mast cells per
� 400 field) compared to the wild-type skin (7.69±3.12
dermal mast cells per � 400 field). Mast cells are resident
immune cells in the dermis and have an important role in
mediating UVR-induced inflammation.6 In the present in-
stance, differences in mast cell numbers did not appear to
account for differences between wild-type and knockout mice
in the UVR-induced cutaneous inflammatory response.
However, although we saw few differences between the gen-
otypes in dermal mast cell numbers, our study did not
compare the functional capabilities of the mast cells, which
may differ between the two genotypes.

In a previous microarray study, we found that expression
of mRNA encoding the z-chain of the CD3 receptor was
decreased 1.7-fold in untreated Slug-knockout epidermis
compared to wild-type epidermis.5 In keeping with these
findings, immunohistochemical staining for CD3 in the
present study revealed decreased numbers of T cells in the
unexposed epidermis of Slug-knockout mice (3.77±2.16 vs
4.7±0.86 in the wild type); however, this difference was not
significant. Our microarray study also demonstrated reduced
expression of both the g- and d-chains of the T-cell receptor
in untreated Slug-knockout epidermis, suggesting that there
were fewer g–d T cells in the knockout than in the wild-type
epidermis.5 In the present study, a progressive decrease in the

Figure 2 Histologic appearance of the skin following exposure to 3MED of

UVR. Wild-type skin (a–f): unexposed skin (a). By 24 h post-UVR, there are

marked neutrophil infiltrates (b). At 48 h, there is widespread apoptosis of

epidermal keratinocytes (c). Seventy-two hours following UVR, there is

moderate epidermal hyperplasia (d). At 96 h following UVR exposure,

lesions vary from moderate or marked epidermal hyperplasia (e, left panel)

to complete loss of the epidermis (e, right panel). By 1-week post-exposure,

there is marked epidermal hyperplasia (f). Slug-knockout skin (g–l):

unexposed skin (g). There are minimal neutrophil infiltrates at 24 h (h)

following UVR exposure. By 48 h, there is almost complete apoptosis of

keratinocytes (i). Epidermal hyperplasia increases from 72 h (j) to 96 h (k)

and 1 week (l) post-exposure. In contrast to wild-type skin, widespread

necrosis does not occur at 96 h following UVR and epidermal hyperplasia is

more modest. Hematoxylin and eosin staining. Bar (a–l)¼ 100 mm.
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number of intraepidermal, CD3-positive T cells occurred
from 12 to 48 h post-exposure in wild-type skin, relative to
the unexposed epidermis (Figure 8). A similar trend was not
seen in the skin of knockout mice. As a result, the number of
intraepidermal T cells in Slug-knockout mice was
significantly higher than that in wild-type mice at the 24 and
48 h time points.

To further evaluate the inflammatory response in the wild-
type and knockout mice following a single UVR exposure, we
compared COX-2 mRNA expression by quantitative RT-PCR
(Figure 9). UVR induction of COX-2 mRNA has been pre-
viously reported in the skin of mice, based on microarray

analysis.10 COX-2 induction results in the production of
prostaglandins that modulate diverse aspects of inflamma-
tion, including vascular permeability, fever, and blood flow.11

COX-2 has previously been shown to increase Snail expres-
sion,12 and Snail has been shown to repress the transcription
of prostaglandin dehydrogenase, the enzyme which in-
activates the major effector of COX-2 activity, prostaglandin
E2.13 There was no difference between Slug-knockout and
wild-type epidermis in COX-2 mRNA expression either
before or at 12, 24, 48, or 72 h following UVR exposure. At
96 h after UVR exposure, there was a significant difference
between the genotypes in COX-2 expression, with a second
peak of COX-2 expression in wild-type epidermis that was
lacking in Slug-knockout epidermis. This second peak of
COX-2 expression likely corresponded to the ulceration seen
in wild-type mice at this time point.

Differences in the number or permeability of blood vessels
in the dermis may have accounted for differences in the cu-
taneous inflammatory response to UVR between knockout
and wild-type skin. However, staining for CD31 did not re-
veal significant differences in the number or average diameter
of dermal blood vessels in unexposed skin of wild-type mice
(3.32±1.02 vessels per six � 400 fields of dermis;
5.94±1.38 mm diameter) vs knockout mice (4.79±1.06
vessels per six � 400 fields of dermis; 6.875±2.19 mm
diameter). Because differences between wild-type and
knockout skin were apparent so soon after UVR exposure, it
is unlikely that changes in vessel number could have been
responsible for differences in inflammatory response.

Expression of Inflammatory Mediators
As cytokines produced in the epidermis are major mediators
of the acute inflammatory response, focused cytokine array
analysis was performed to help explain the differences in
cutaneous inflammation seen between the wild-type and
knockout mice following acute UVR exposure. Expression of
inflammatory genes in the two genotypes was evaluated at 12
and 24 h following UVR exposure. Of the 112 genes
represented on the array of inflammatory mediators, only 10
were found to be consistently expressed in at least one of the
four experimental groups (Table 1).

Figure 3 Immunohistochemical detection of CPDs following exposure to 3MED of UVR. (a) Unexposed skin of a wild-type mouse lacks staining for CPDs.

The unexposed skin of knockout mice also lacked positive nuclear staining for CPDs. (b, c) Both the wild-type and knockout mice have abundant positive

nuclear staining for CPDs. Bar (a–c)¼ 20 mm.

Figure 4 Changes in skin and epithelial thickness following exposure to

3MED of UVR. (a) Skin thickness as measured with digital calipers. Data

represent the percent change in skin thickness relative to pre-UVR skin

thickness. Skin thickness is consistently less in the Slug-knockout mice

compared to wild-type mice. (b) Skin thickness as measured by counting

the number of epidermal cells in six hematoxylin- and eosin-stained � 400

fields. There is a decreased proliferative response in the Slug-knockout mice

at 12 h and 1 week following UVR exposure. *Po0.05. Error bars represent

the standard deviation.
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Complement component 3, high-affinity IgG Fc receptor I,
and interleukin-12b (IL12b) were expressed at all time points
in both wild-type and Slug-knockout skin; no significant
differences were seen between the two genotypes at the same
time points or between the two time points in either

genotype. Thus, these genes did not appear to be UVR
inducible over the time course of these studies, nor did
differences in their expression account for differences in the
UVR-induced cutaneous inflammatory response of wild-type
and Slug-knockout mice.

A number of genes were expressed by UVR-exposed
wild-type epidermis but were not expressed by similarly
treated Slug-knockout epidermis. These included the
proinflammatory chemokines and cytokines fractalkine
(Cx3cl1), Cxcl2, interleukin-1b (IL1b), and macrophage
migration inhibitory factor (Mif). Differences between
wild-type and Slug-knockout skin in UVR inducibility of
these mediators, all of which are known to play a role in
leukocyte chemotaxis,14–16 might well have accounted for
differences in inflammatory cell infiltrate in the UVR-ex-
posed skin of the two genotypes. Moreover, the interleukin-
12 p35 subunit (IL12a) was expressed at both time points
following UVR in wild-type epidermis but not in Slug-
knockout epidermis. IL12 is believed to block UVR-induced
immunosuppression.17 Interestingly, the interleukin-1 decoy
receptor (IL1r2), which functions to negatively regulate IL1
activity,18 was also induced in wild-type skin by UVR.
Another negative regulator of IL1 activity, IL1r antagonist,
has previously been shown to be induced by UVR in kera-
tinocytes.19 A component of the high-affinity IgE Fc receptor
was expressed in wild-type epidermis 24 h after UVR ex-
posure, but was not expressed in wild-type epidermis at 12 h
after exposure or in Slug-knockout skin at either time point
following UVR exposure. The significance of this finding is
unclear. Although both keratinocytes and Langerhans cells
may express the low-affinity receptor for IgE (Fc epsilon
RII),20,21 neither has been reported to express the high-affi-
nity receptor.

Apoptosis
P53-dependent keratinocyte apoptosis is a prominent feature
of sunburn22 and can be responsible for the release of
proinflammatory substances.23,24 Slug is reported to have
antiapoptotic effects;25,26 however, the relationship between
Slug and p53 is complex. We show here that there was no
difference in basal expression of p53 protein between un-
treated wild-type and Slug-knockout epidermis. There was a
dramatic increase in p53 protein expression at times up to
96h post-UVR in both wild-type and knockout mice (Figure 10),
but there was no difference between the genotypes in the
numbers of p53-positive epidermal cells at any time point. As
expected, numbers of cleaved caspase 3-positive cells reflected
the numbers of p53-positive cells (Figure 10) and were
associated with morphologic evidence of apoptosis.22 A
significant difference in numbers of cleaved caspase 3-positive
cells between wild-type and Slug-knockout epidermis was
seen only at 12 h after UVR exposure (7.21±6.58 vs
1.27±0.98), suggesting a somewhat delayed apoptotic
response in Slug epidermis.

Figure 5 Immunohistochemical detection of Ki-67-positive cells in the

epidermis following exposure to 3MED of UVR. The percent of Ki-67-

positive cells in the epidermis was determined in each of six � 400 fields for

each mouse. Numbers of Ki-67-positive cells progressively decrease in the

wild-type mice following a single UVR exposure; this decrease is not seen in

the knockout mice. At 72 h post-exposure, there are significantly more Ki-

67-positive cells in the wild-type than those in the knockout epidermis. At 1

week post-exposure, there are significantly more Ki-67-positive cells in the

knockout than those in the wild-type epidermis. *Po0.05. Error bars

represent the standard deviation.

Figure 6 Neutrophil infiltrates in the dermis following exposure to 3MED

of UVR. (a) The average number of neutrophils present in the dermis, as

determined by counting the number of neutrophils in six hematoxylin- and

eosin-stained � 400 fields. Neutrophil infiltrates peak in both the wild-type

and Slug-knockout mice at 24 h post-UVR exposure, but are markedly

decreased in the Slug-null compared to wild-type mice. (b) MPO activity

demonstrates decreased neutrophil activation in the Slug-knockout skin.

*Po0.05. Error bars represent the standard deviation.
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DISCUSSION
The acute response to UVR in 129 wild-type mice in this
study was first evidenced by increased p53 protein expression
and COX-2 mRNA expression at 12 and 24 h after exposure.

Peak cleaved caspase 3 expression was observed at 48 h, the
onset of ulceration occurred after 72 h, and ulceration was
followed by epidermal hyperplasia. Dermal edema and in-
flammatory cell infiltrates were prominent by 24 h post-
exposure. Slug-knockout mice exhibited markedly attenuated
inflammatory responses to UVR. Knockout mice had de-
creased dermal edema, neutrophil infiltration, and COX-2
expression, as well as altered cytokine profiles and pro-
liferative responses compared to wild-type mice. Having
previously reported UVR induction of Slug in the murine
epidermis, we now suggest that the complex inflammatory
response of the skin following UVR is regulated, at least in
part, by Slug.

We observed significantly more dermal mast cells in the
Slug-knockout mice than in the wild-type mice at 24 h fol-
lowing a single dose of UVR. Given the critical importance of
mast cells in the cutaneous inflammatory response, it was
surprising to see increased mast cell numbers in the presence
of reduced inflammation in the knockout mice. Following
UVR exposure of the skin, mast cells are thought to release
histamine which, in turn, leads to the production of pros-
taglandins and other inflammatory mediators.6 We are cur-
rently characterizing mast cells from Slug-knockout mice to
determine if they exhibit impaired functional capabilities.
Significantly increased numbers of epidermal CD3-positive
cells were also detected in the Slug-null mice compared to
wild-type mice; however, this finding appeared to reflect re-
duced UVR-induced depletion of intraepidermal lympho-
cytes rather than enhanced recruitment of CD3-positive cells
to the epidermis.

Given the obvious relationship between cytokines and
chemokines and the inflammatory response, inflammatory
mediator expression profiles were examined in the mice
following UVR exposure. Several of the cytokines and
chemokines identified as differing in expression between
UVR-exposed wild-type and Slug-knockout epidermis in the
present study have previously been shown to be produced by
keratinocytes and to be induced following UVR exposure of
the skin, including IL1b,10,27,28 IL12,29 Cxcl2,10 and Mif.16

Induction of IL1b expression has been reported following
UVR exposure of CD1 mice10 and BALB/c mice27,28 and is
proposed to be the initiating event in the inflammatory re-
sponse to UVR.27 Several of the mediators induced by UVR
in wild-type but not knockout epidermis play important
roles in recruiting inflammatory cells to UVR-exposed skin.
Decreased production of the potent neutrophil chemoat-
tractants IL1b and Cxcl2 in the UVR-exposed Slug-knockout
epidermis may underlie the diminished neutrophil response
seen in these mice.15 Examination of the 1000 bases upstream
from the transcription start sites in the IL1b, IL1r2, IL12a,
Mif, Cxcl2, and Cx3cl1 revealed that single canonical Slug
binding sites (CACCTG or CAGGTG)30 were present in the
promoters of IL12a, Mif, Cxcl2, and Cx3cl1 but absent from
the promoters of IL1b and IL1r2. Thus, Slug regulation of
these latter two genes must be indirect.

Figure 7 Mast cell counts in the dermis following exposure to 3MED of

UVR. The average number of mast cells in each of six acid-fast-stained

� 400 fields was determined for each mouse. These findings demonstrate

significantly more mast cells in the dermis of Slug-knockout compared to

wild-type mice at 24 h post-UVR. *Po0.05. Error bars represent the

standard deviation.

Figure 8 Immunohistochemical detection of CD3-positive cells in the

epidermis following exposure to 3MED of UVR. The percent of CD3-positive

cells in the epidermis was determined in each of six � 400 fields for each

mouse. Numbers of CD3-positive cells progressively decrease in the wild-

type mice following a single UVR exposure; this decrease is not seen in the

knockout mice. At 24 and 48 h post-exposure, there are significantly more

CD3-positive cells in the knockout than in the wild-type epidermis.

*Po0.05. Error bars represent the standard deviation.

Figure 9 Quantitative RT-PCR detection of COX-2 mRNA in UVR-exposed

epidermis. By 12 h post-UVR, COX-2 expression has increased dramatically

in both the wild-type and Slug-knockout mice; however, at 96 h, there is

significantly more COX-2 expression in the wild-type mice than in the Slug-

knockout mice. COX-2 expression values are normalized to GAPDH

expression. *Po0.05. Error bars represent the standard deviation.
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Caspase 3 is an effector caspase that mediates many of the
cellular events that result in apoptosis.31 In this study, im-
munohistochemical detection of cleaved caspase 3 was used
to identify apoptotic keratinocytes. This revealed a significant
decrease in UVR-induced apoptosis in the Slug-null epi-
dermis compared to wild-type epidermis 12 h following UVR
exposure. Slug is believed to have antiapoptotic functions, as
evidenced by increased numbers of apoptotic cells in the
bone marrow of Slug-knockout mice relative to their wild-
type counterparts following g-irradiation.26 Our observation
was thus surprising and warrants further investigation. At
later time points, however, there was no difference in cleaved
caspase 3 immunoreactivity, suggesting that the absence of
Slug may only delay and not prevent the onset of UVR-
induced apoptosis.

UVR-induced apoptosis is p53-dependent,32 but is also
modulated by reactive oxygen species, triggering of cell-death
receptors, autocrine release of death ligands, and mitochon-
drial damage with subsequent cytochrome c release.24 The
relationship between Slug and p53 remains unclear. One
study found that the absence of Slug did not affect p53
protein induction following UVR exposure.24 There is a Slug
binding site in the p53 promoter region, and overexpression
of Slug or Snail using an adenoviral vector in human breast
carcinoma cells lines (MCF7) results in a modest decrease in
p53 mRNA and protein expression and prevents apoptosis
induced by the DNA-damaging agent adriamycin.25 It is
postulated that the induction of p53 by g-irradiation results
in increased expression of Slug, which then represses trans-
cription of the proapoptotic protein, Puma.33,34 Expression
of Slug, therefore, decreases Puma expression, resulting in a
net antiapoptotic effect.34 In the absence of Slug, however,
the proapoptotic Puma is expressed.34 In contrast, another
study found no change in DNA damage-induced p53 ex-
pression in normal hematopoietic stem cells from Slug-
knockout mice.25 The interactions between p53 and Slug may
be dependent upon the cell type or the type of DNA damage
that induced p53 expression.25

We have previously reported delayed expression of keratin
6 in the epidermis of the Slug-knockout mice relative to the
wild-type mice.3 Because keratin 6 is a marker of prolifera-
tion,35 these results suggested a delayed proliferative response
in Slug-knockout epidermis following UVR exposure. De-
creased keratinocyte proliferation in the absence of Slug was
suggested in the current study by finding significantly de-
creased numbers of epidermal cells at 1 week post-UVR in
the knockout mice, a time at which wild-type epidermis
exhibited a robust proliferative response. However, Ki-67
staining suggested little overall difference in cell proliferation
between wild-type and knockout skin. There were fewer
Ki-67-positive cells in knockout keratinocytes at 72 h post-
exposure, but by 1 week after exposure Slug-knockout skin
had more Ki-67-positive cells than wild-type skin. The role of
Slug and Snail in cell proliferation has previously been de-
monstrated by microarray analysis of MDCK cells that

Table 1 Comparative gene expression following UVR exposure

12 h, KO 24h, KO 12 h, WT 24h, WT

Mean s.d. Mean s.d. Mean s.d. Mean s.d.

Cx3cl1 Absent — Absent — Absent — 0.533 0.432

Cxcl2 Absent — Absent — Absent — 0.582 0.097

Fcer1g Absent — Absent — Absent — 0.507 0.046

IL1b Absent — Absent — Absent — 0.723 0.248

IL1r2 Absent — Absent — Absent — 0.511 0.122

Mif Absent — Absent — Absent — 0.732 0.157

IL12aa Absent — Absent — 0.664 0.166 0.641 0.085

C3b 0.572 0.219 0.747 0.411 0.586 0.027 0.576 0.398

Fcgr1b 0.985 0.794 1.694 1.293 0.865 0.460 0.869 0.652

IL12bb 1.008 0.707 1.274 0.766 1.041 0.182 0.864 0.619

GAPDH 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

Each value represents the average of three replicates. Each replicate represents
pooled RNA from two mice.
a
No significant change over time in WT.
b
No significant difference between KO and WT; no significant change over

time in either KO or WT.

Figure 10 Apoptosis in the epidermis following exposure to 3MED of UVR.

(a) Immunohistochemical detection of p53. Expression of p53 increases

dramatically following UVR exposure and then progressively declines. No

significant differences in expression are observed between the wild-type

and Slug-knockout mice. (b) Immunohistochemical detection of cleaved

caspase 3. Cleaved caspase 3 immunoreactivity highlights apoptotic cells

and is significantly decreased in the Slug-knockout mice at 12 h post-UVR

exposure compared to wild-type mice. In both Slug-knockout and wild-

type mice, cleaved caspase 3 immunoreactivity peaks at 48 h following UVR

exposure. For both p53 and cleaved caspase 3, the percent of positive cells

in the epidermis was determined in each of six � 400 fields for each mouse.

*Po0.05. Error bars represent the standard deviation.
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overexpressed Slug or Snail. Cells expressing high levels of
these Snail family members had altered expression of various
growth factors (hepatoma-derived growth factor, fibroblast
growth factor-13, fibroblast growth factor-19, and cyclin D1)
and cyclin-dependent kinase inhibitors (p21Cip and p18).36

Similarly, our microarray study comparing untreated epi-
dermis of wild-type and Slug-null mice identified decreased
expression of cyclins D2 and G2, which regulate cell cycle
progression.5 These findings are in contrast to a previous
study that showed decreased keratinocyte proliferation
without changes in cyclin D expression in response to en-
hanced Slug expression.37 Another study found no change in
proliferation as measured by bromodeoxyuridine in-
corporation in human keratinocytes transfected with a Slug
expression vector.2 Increased Slug expression has also been
shown to reduce proliferation of cultured keratinocytes.37,38

Thus, the role of Slug in epidermal proliferation remains
obscure, and our present results do not clarify the situation.

Slug is a novel and unexpected participant in the acute
inflammatory response of the skin to UVR. Wild-type levels
of Slug expression appear to be required for maximal levels of
neutrophil influx, keratinocyte necrosis, and epidermal hy-
perplasia in UVR-exposed skin. At present, the precise step of
the inflammatory pathway at which Slug exerts its effect is
not known. The defect in the cutaneous inflammatory re-
sponse of Slug-knockout mice to UVR may lie in the failure
of keratinocytes to release appropriate proinflammatory
mediators or in the inability of leukocytes to response ap-
propriately to these signals. A number of considerations
suggest that the keratinocyte is the cell responsible for the
abnormal response. Slug is expressed in adult keratinocytes
but not in adult leukocytes.4 Moreover, UVR exposure of the
skin rapidly induces enhanced Slug expression in keratino-
cytes.3 Most of the UVB striking the skin is absorbed by the
epidermis, and only UVA penetrates to the dermis to reach
blood vessels and leukocytes:39,40 it is the UVB that accounts
for much of the inflammatory response of the skin to
UVR.32,41 The present studies show that UVR exposure in-
duces expression of a variety of proinflammatory epidermal
cytokines and chemokines in wild-type skin that fail to be
induced in the epidermis of Slug-knockout mice. In the ab-
sence of these mediators of inflammation, it is likely that the
inflammatory response of the skin and the changes attendant
upon this response are lacking in Slug-knockout skin.
However, our studies do not exclude the possibility that the
response of Slug-knockout leukocytes to proinflammatory
signals is also altered. Studies investigating the function and
responsiveness of Slug-knockout leukocytes are underway. In
particular, we plan to test the cutaneous inflammatory res-
ponse of lethally irradiated wild-type mice reconstituted with
Slug-knockout hematopoietic cells, as well as the reciprocal
chimeras.

Based on our findings to date, further evaluation of the
cutaneous inflammatory response to non-UVR inflammatory
stimuli in Slug-knockout mice seems warranted. Ad-

ditionally, the role of Slug in DNA repair and evaluation of
DNA repair mechanisms following UVR exposure in Slug-
knockout mice should be investigated. Future studies will
provide insight into the role of this new and potentially
important factor in the acute inflammatory response. Ulti-
mately, modulating Slug activity may be a way to manipulate
the cutaneous inflammatory response and reduce its detri-
mental effects, including acute tissue damage and tumor
promotion.
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