Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Fishing for genes influencing vertebrate behavior: zebrafish making headway

Abstract

The zebrafish (Danio rerio) has been a favorite model of developmental biologists and geneticists, but only recently have investigators begun to appreciate its usefulness in behavior genetics. Papers focusing on the behavior or brain function of this species were once extremely rare, but during the past decade rapid growth has taken place. Despite the increased interest, however, the number of studies devoted to the analysis of the behavior of this species is still orders of magnitude less than those conducted on more traditional laboratory subjects including the rat and the mouse. The authors review selected literature and demonstrate that zebrafish is an excellent subject for behavior genetics research, especially in the area of forward genetics (mutagenesis).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequency of publications on zebrafish behavior in the past 30 years.

Similar content being viewed by others

References

  1. Goldsmith, P. Modelling eye diseases in zebrafish. Neuroreport 12(13), A73–A77 (2001).

    Article  Google Scholar 

  2. Hall, D. & Suboski, M.D. Visual and olfactory stimuli in learned release of alarm reactions by zebra danio fish (Brachydanio rerio). Neurobiol. Learn. Mem. 63(3), 229–240 (1995).

    Article  Google Scholar 

  3. Turnell, E.R., Mann, K.D., Rosenthal, G.G. & Gerlach, G. Mate choice in zebrafish (Danio rerio) analyzed with video-stimulus techniques. Biol. Bull. 205(2), 225–226 (2003).

    Article  Google Scholar 

  4. Zhdanova, I.V., Wang, S.Y., Leclair, O.U. & Danilova, N.P. Melatonin promotes sleep-like state in zebrafish. Brain Res. 903(1–2), 263–268 (2001).

    Article  Google Scholar 

  5. Gerlai, R., Lahav, M., Guo, S. & Rosenthal, A. Drinks like a fish: Zebrafish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol. Biochem. Behav. 67(4), 773–782 (2000).

    Article  Google Scholar 

  6. Streisinger, G., Walker, C., Dower, N., Knauber, D. & Singer, F. Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature 291(5813), 293–296 (1981).

    Article  Google Scholar 

  7. Walker, C. & Streisinger, G. Induction of mutations by γ rays in pregonial germ cells of zebrafish embryos. Genetics 103(1), 125–136 (1983).

    Google Scholar 

  8. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996).

    CAS  PubMed  Google Scholar 

  9. Haffter, P. et al. The identification of genes with unique and essential function in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).

    CAS  PubMed  Google Scholar 

  10. Granato, M. et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123, 399–413 (1996).

    CAS  PubMed  Google Scholar 

  11. Donovan, A. et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403(6771), 776–781 (2000).

    Article  Google Scholar 

  12. Guo, S. et al. A regulator of transcriptional elongation, which is required for vertebrate neuronal development. Nature 408(6810), 366–369 (2000).

    Article  Google Scholar 

  13. Zhang, J., Talbot, W.S. Talbot, W.S. & Schier A.F. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92(2), 241–251 (1998).

    Article  Google Scholar 

  14. Knapik, E.W. et al. A microsatellite genetic linkage map for zebrafish. Nat. Genet. 18(4), 338–343 (1998).

    Article  Google Scholar 

  15. Geisler, R. et al. A radiation hybrid map of the zebrafish genome. Nat. Genet. 23(1), 86–89 (1999).

    Article  Google Scholar 

  16. Hukriede, N.A. et al. Radiation hybrid mapping of the zebrafish genome. Proc. Natl. Acad. Sci. USA 96(17), 9745–9750 (1999).

    Article  Google Scholar 

  17. Stickney, H.L. et al. Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. Genome Res. 12(12), 1929–1934 (2002).

    Article  Google Scholar 

  18. Kelly, P.D. et al. Genetic linkage mapping of zebrafish genes and ESTs. Genome Res. 10(4), 558–567 (2000).

    Article  Google Scholar 

  19. Golling, G. et al. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat. Genet. 31(2), 135–140 (2002).

    Article  Google Scholar 

  20. Nasevicius, A. & Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26(2), 216–220 (2000).

    Article  Google Scholar 

  21. McCallum, C.M., Comai, L., Greene, E.A. & Henikoff, S. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol. 123(2), 439–442 (2000).

    Article  Google Scholar 

  22. Wienholds, E., Schulte-Merker, S., Walderich, B. & Plasterk, R.H. Target selected inactivation of the zebrafish rag1 gene. Science 297(5578), 99–102 (2002).

    Article  Google Scholar 

  23. Sprague, J., Doerry, E., Douglas, S. & Westerfield, M. The Zebrafish Information Network (ZFIN): A resource for genetic, genomic and developmental research. Nucleic Acids Res. 29(1), 87–90 (2001).

    Article  Google Scholar 

  24. Eisen, J.S. Zebrafish make a big splash. Cell 87(6), 969–977 (1996).

    Article  Google Scholar 

  25. Granato, M. & Nusslein-Volhard, C. Fishing for genes controlling development. Curr. Opin. Genet. Dev. 6(4), 461–468 (1996).

    Article  Google Scholar 

  26. Cerda, J., Conrad, M., Markl, J., Brand, M. & Herrmann, H. Zebrafish vimentin: Molecular characterisation, assembly properties and developmental expression. Eur. J. Cell Biol. 77(3), 175–187 (1998).

    Article  Google Scholar 

  27. Barbazuk, W.B. et al. The syntenic relationship of the zebrafish and human genomes. Genome Res. 10(9), 1351–1358 (2000).

    Article  Google Scholar 

  28. Woods, I.G. et al. A comparative map of the zebrafish genome. Genome Res. 10(12), 1903–1914 (2000).

    Article  Google Scholar 

  29. Haffter, P. & Nusslein-Volhard, C. Large scale genetics in a small vertebrate, the zebrafish. Int. J. Dev. Biol. 40(1), 211–227 (1996).

    Google Scholar 

  30. Currie, P.D. Zebrafish genetics: Mutant cornucopia. Curr. Biol. 6(12), 1548–1552 (1996).

    Article  Google Scholar 

  31. Holder, N. & McMahon, A. Genes from zebrafish screens. Nature 384(6609), 515–516 (1996).

    Article  Google Scholar 

  32. Fetcho, J.R. & O'Malley, D.M. Visualization of active neural circuitry in the spinal cord of intact zebrafish. J. Neurophysiol. 73(1), 399–406 (1995).

    Article  Google Scholar 

  33. Detrich, W.H., Westerfield, M. & Zon, L.I. (eds). The Zebrafish: Methods in Cell Biology Vols 59–60 (Academic Press, San Diego, 1999).

    Google Scholar 

  34. Eisen, J.S. Motoneuronal development in the embryonic zebrafish. Development Suppl 2, 141–147 (1991).

  35. Canger, A.K. et al. Restricted expression of the neuronal intermediate filament protein plasticin during zebrafish development. J. Comp. Neurol. 399(4), 561–572 (1998).

    Article  Google Scholar 

  36. Concha, M.L. & Adams, R.J. Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula and neurula: A time-lapse analysis. Development 125(6), 983–994 (1998).

    Google Scholar 

  37. Schier, A.F. Genetics of neural development in zebrafish. Curr. Opin. Neurobiol. 7(1), 119–126 (1997).

    Article  Google Scholar 

  38. Neuhauss, S.C. et al. Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J. Neurosci. 19(19), 8603–8615 (1999).

    Article  Google Scholar 

  39. Neuhauss, S.C. Behavioral genetic approaches to visual system development and function in zebrafish. J. Neurobiol. 54(1), 148–160 (2003).

    Article  Google Scholar 

  40. Baier, H. et al. Genetic dissection of the retinotectal projection. Development 123, 415–425 (1996).

    CAS  PubMed  Google Scholar 

  41. Brockerhoff, S.E. et al. A behavioral screen for isolating zebrafish mutants with visual system defects. Proc. Natl. Acad. Sci. USA 92(23), 10545–10549 (1995).

    Article  Google Scholar 

  42. Li, L. & Dowling, J.E. A dominant form of inherited retinal degeneration caused by a non-photoreceptor cell-specific mutation. Proc. Natl. Acad. Sci. USA 94(21), 11645–11650 (1997).

    Article  Google Scholar 

  43. Baier, H. Zebrafish on the move: Towards a behavior-genetic analysis of vertebrate vision. Curr. Opin. Neurobiol. 10(4), 451–455 (2000).

    Article  Google Scholar 

  44. Kratz, E., Dugas, J.C. & Ngai, J. Odorant receptor gene regulation: Implications from genomic organization. Trends Genet. 18(1), 29–34 (2002).

    Article  Google Scholar 

  45. Malicki, J. et al. Mutations affecting development of the zebrafish ear. Development 123, 275–283 (1996).

    CAS  PubMed  Google Scholar 

  46. Bang, P.I., Yelick, P.C., Malicki, J. & Sewell, W.F. High-throughput behavioral screening method for detecting auditory response defects in zebrafish. J. Neurosci. Methods 118(2), 177–187 (2002).

    Article  Google Scholar 

  47. Fetcho, J.R. & Liu K.S. Zebrafish as a model system for studying neuronal circuits and behavior. Ann. NY Acad. Sci. 860, 333–345 (1998).

    Article  CAS  Google Scholar 

  48. Liu, K.S. & Fetcho, J.R. Laser ablation reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron 23, 325–335 (1999).

    Article  CAS  Google Scholar 

  49. Lorent, K., Liu, K.S., Fetcho, J.R. & Granato, M. The zebrafish space cadet gene controls axonal pathfinding of neurons that modulate fast turning movements. Development 128(11), 2131–2142 (2001).

    Google Scholar 

  50. Bate, M. Development of motor behaviour. Curr. Opin. Neurobiol. 9(6), 670–675 (1999).

    Article  Google Scholar 

  51. Saint-Amant, L. & Drapeau, P. Motoneuron activity patterns related to the earliest behavior of the zebrafish embryo. J. Neurosci. 20(11), 3964–3972 (2000).

    Article  Google Scholar 

  52. Budick, S.A. & O'Malley, D.O. Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J. Exp. Biol. 203(Pt 17), 2565–2579 (2000).

    CAS  Google Scholar 

  53. Hernandez, L.P. Intraspecific scaling of feeding mechanics in an ontogenetic series of zebrafish, Danio rerio. J. Exp. Biol. 203 (Pt 19), 3033–3043 (2000).

    CAS  PubMed  Google Scholar 

  54. Borla, M.A., Palecek, B., Budick, S. & O'Malley, D.M. Prey capture by larval zebrafish: evidence for fine axial motor control. Brain Behav. Evol. 60(4), 207–229 (2002).

    Article  Google Scholar 

  55. Gahtan, E., Tanger, P. & Baier, H. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J. Neurosci. 25(40), 9294–9303 (2005).

    Article  Google Scholar 

  56. Plaut, I. Effects of fin size on swimming performance, swimming behaviour and routine activity of zebrafish Danio rerio. J. Exp. Biol. 203 (Pt 4), 813–820 (2000).

    CAS  PubMed  Google Scholar 

  57. Lockwood, B., Bjerke, S., Kobayashi, K. & Guo, S. Acute effects of alcohol on larval zebrafish: A genetic system for large-scale screening. Pharmacol. Biochem. Behav. 77(3), 647–654 (2004).

    Article  Google Scholar 

  58. Darland, T. & Dowling, J.E. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc. Natl. Acad. Sci. USA 98(20), 11691–11696 (2001).

    Article  Google Scholar 

  59. Dlugos, C.A. & Rabin, R.A. Ethanol effects on three strains of zebrafish: Model system for genetic investigations. Pharm. Biochem. Behav. 74(2), 471–480 (2003).

    Article  Google Scholar 

  60. Cahill, G.M. Clock mechanisms in zebrafish. Cell Tissue Res. 309(1), 27–34 (2002).

    Article  Google Scholar 

  61. Tropepe, V. & Sive, H.L. Can zebrafish be used as a model to study neurodevelopmental causes of autism? Genes Brain Behav. 2(5), 268–281 (2003).

    Article  Google Scholar 

  62. Sison, M. & Gerlai, R. Associative learning in zebrafish (Danio rerio) [Abstract # 882.7] (Society for Neuroscience, Washington, DC, 2005).

    Google Scholar 

  63. Williams, F.E., White, D. & Messer, M.S. A simple spatial alternation task for assessing memory function in zebrafish. Behav. Processes 58(3), 125–132 (2002).

    Article  Google Scholar 

  64. Pradel, G., Schachner, M. & Schmidt, R. Inhibition of memory consolidation by antibodies against cell adhesion molecules after active avoidance conditioning in zebrafish. J. Neurobiol. 39(2), 197–206 (1999).

    Article  Google Scholar 

  65. Pradel, G., Schmidt, R. & Schachner, M. Involvement of L1.1 in memory consolidation after active avoidance conditioning in zebrafish. J. Neurobiol. 43(4), 389–403 (2000).

    Article  Google Scholar 

  66. Kato, S. et al. A computer image processing system for quantification of zebrafish behavior. J. Neurosci. Methods 134(1), 1–7 (2004).

    Article  Google Scholar 

  67. Blaser, R. & Gerlai, R. Behavioral phenotyping in zebrafish: Comparison of three behavioral quantification methods. Behav. Res. Methods (in press).

  68. Orger, M.B. et al. Behavioral screening assays in zebrafish. Methods Cell. Biol. 77, 53–68 (2004).

    Article  Google Scholar 

  69. Muto, A. et al. Forward genetic analysis of visual behavior in zebrafish. PLoS Genet. 1(5), e66 (2005).

    Article  Google Scholar 

  70. DeBruyne, J. et al. Isolation and phenogenetics of a novel circadian rhythm mutant in zebrafish. J. Neurogenet. 18(2), 403–428 (2004).

    Article  Google Scholar 

  71. Gerlai, R. & Clayton, N.S. Analysing hippocampal function in transgenic mice: An ethological perspective. Trends Neurosci. 22(2), 47–51 (1999).

    Article  Google Scholar 

  72. Wright, D., Rimmer, L.B., Pritchard, V.L., Krause, J. & Butlin, R.K. Inter- and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio). Naturwissenschaften 90(8), 374–377 (2003).

    Article  Google Scholar 

  73. Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio) 4th Edn (University of Oregon Press, Eugene, OR, 2000).

    Google Scholar 

  74. Frey, H. Das Aquarium von A bis Z (Neumann Verlag, Radebeul, Germany, 1966).

    Google Scholar 

  75. Engeszer, R.E., Ryan, M.J. & Parichy, D.M. Learned social preference in zebrafish. Curr. Biol. 14(10), 881–884 (2004).

    Article  Google Scholar 

  76. Delaney, M. et al. Social interaction and distribution of female zebrafish (Danio rerio) in a large aquarium. Biol. Bull. 203(2), 240–241 (2002).

    Article  Google Scholar 

  77. Miklosi, A., Csanyi, V. & Gerlai, R. Behavior genetic analysis of predator avoidance and inspection behavior in paradise fish: The effect of parental care (Macropodus opercularis). Behav. Genet. 27(3), 191–200 (1997).

    Article  Google Scholar 

  78. Adams, B., Fitch, T., Chaney, S. & Gerlai, R. Altered performance characteristics in cognitive tasks: Comparison of the albino ICR and CD1 mouse strains. Behav. Brain Res. 133(2), 351–361 (2002).

    Article  Google Scholar 

  79. Gerlai, R. Behavioral tests of hippocampal function: Simple paradigms, complex problems. Behav. Brain Res. 125(1–2), 269–277 (2001).

    Article  Google Scholar 

  80. Gerlai, R. Gene targeting in neuroscience: The systemic approach. Trends Neurosci. 19, 188–189 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by NIH/NIAAA (USA) and NSERC (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Gerlai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sison, M., Cawker, J., Buske, C. et al. Fishing for genes influencing vertebrate behavior: zebrafish making headway. Lab Anim 35, 33–39 (2006). https://doi.org/10.1038/laban0506-33

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban0506-33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing