Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Note
  • Published:

A proposed model of naturally occurring osteoarthritis in the domestic rabbit

Abstract

Osteoarthritis affects one in eight American adults over the age of 25 y and is a leading cause of chronic disability in the US. Translational research to investigate treatments for this naturally occurring joint disease requires an appropriate animal model. The authors conducted a retrospective study to assess the potential of naturally occurring osteoarthritis in the domestic rabbit as a model of the human disease. Analysis of radiographic images showed that the presence and severity of osteoarthritis were significantly influenced by both age and body weight. The most commonly affected joints were the knee and the hip. The findings reported here suggest that the rabbit is an excellent model of spontaneously arising osteoarthritis that may be useful in translational research pertaining to the human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radiographic images of hip joints with increasing degrees of osteoarthritis severity.
Figure 2: Radiographic images of knee joints with increasing degrees of osteoarthritis severity.
Figure 3: The presence and severity of osteoarthritis detected in radiographic images of each of the examined joints in the total population.
Figure 4: The influence of age on the development and severity of osteoarthritis.

Similar content being viewed by others

References

  1. Kinds, M.B. et al. A systematic review of the association between radiographic and clinical osteoarthritis of hip and knee. Osteoarthritis Cartilage 19, 768–778 (2011).

    Article  CAS  Google Scholar 

  2. Lawrence, R.C. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58, 26–35 (2008).

    Article  Google Scholar 

  3. Bendele, A.M. Animal models of osteoarthritis in an era of molecular biology. J. Musculoskelet. Neuronal Interact. 2, 501–503 (2002).

    CAS  PubMed  Google Scholar 

  4. Dinser, R. Animal models for arthritis. Best Pract. Res. Clin. Rheumatol. 22, 253–267 (2008).

    Article  CAS  Google Scholar 

  5. Bendele, A.M. Progressive chronic osteoarthritis in femorotibial joints of partial medial meniscectomized guinea pigs. Vet. Pathol. 24, 444–448 (1987).

    Article  CAS  Google Scholar 

  6. Bendele, A.M. & White, S.L. Early histopathologic and ultrastructural alterations in femorotibial joints of partial medial meniscectomized guinea pigs. Vet. Pathol. 24, 436–443 (1987).

    Article  CAS  Google Scholar 

  7. van der Kraan, P.M., Vitters, E.L., van de Putte, L.B. & van den Berg, W.B. Development of osteoarthritic lesions in mice by “metabolic” and “mechanical” alterations in the knee joints. Am. J. Pathol. 135, 1001–1014 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. van der Kraan, P.M., Vitters, E.L., van Beuningen, H.M., van de Putte, L.B. & van den Berg, W.B. Degenerative knee joint lesions in mice after a single intra-articular collagenase injection. A new model of osteoarthritis. J. Exp. Pathol. 71, 19–31 (1990).

    CAS  Google Scholar 

  9. O'Driscoll, S.W. The healing and regeneration of articular cartilage. J. Bone Joint Surg. Am. 80, 1795–1812 (1998).

    Article  CAS  Google Scholar 

  10. Bendele, A.M. & Hulman, J.F. Spontaneous cartilage degeneration in guinea pigs. Arthritis Rheum. 31, 561–565 (1988).

    Article  CAS  Google Scholar 

  11. Bendele, A.M., White, S.L. & Hulman, J.F. Osteoarthrosis in guinea pigs: histopathologic and scanning electron microscopic features. Lab. Anim. Sci. 39, 115–121 (1989).

    CAS  PubMed  Google Scholar 

  12. Bendele, A.M. & Hulman, J.F. Effects of body weight restriction on the development and progression of spontaneous osteoarthritis in guinea pigs. Arthritis Rheum. 34, 1180–1184 (1991).

    Article  CAS  Google Scholar 

  13. Silberberg, R., Saxton, J., Sperling, G. & McCay, C. Degenerative joint disease in Syrian hamsters. Federation Proceedings 11, 427–432 (1952).

    Google Scholar 

  14. Chen, H. et al. MRI and histologic analysis of collagen type II sponge on repairing the cartilage defects of rabbit knee joints. J. Biomed. Mater. Res. B. Appl. Biomater. 96, 267–275 (2011).

    Article  Google Scholar 

  15. Isaac, D.I., Meyer, E.G., Kopke, K.S. & Haut, R.C. Chronic changes in the rabbit tibial plateau following blunt trauma to the tibiofemoral joint. J. Biomech. 43, 1682–1688 (2010).

    Article  Google Scholar 

  16. Shirai, T. et al. Chondroprotective effect of alendronate in a rabbit model of osteoarthritis. J. Orthop. Res. 29, 1572–1577 (2011).

    Article  CAS  Google Scholar 

  17. Vaseenon, T. et al. Organ-level histological and biomechanical responses from localized osteoarticular injury in the rabbit knee. J. Orthop. Res. 29, 340–346 (2011).

    Article  Google Scholar 

  18. Arøen, A., Heir, S., Løken, S., Reinholt, F.P. & Engebretsen, L. Articular cartilage defects in a rabbit model, retention rate of periosteal flap cover. Acta. Orthop. 76, 220–224 (2005).

    Article  Google Scholar 

  19. Altman, R. et al. Design and conduct of clinical trials in patients with osteoarthritis: recommendations from a task force of the Osteoarthritis Research Society. Results from a workshop. Osteoarthritis Cartilage 4, 217–243 (1996).

    Article  CAS  Google Scholar 

  20. Boulocher, C.B. et al. Radiographic assessment of the femorotibial joint of the CCLT rabbit experimental model of osteoarthritis. BMC Med. Imaging, published online, doi:10.1186/1471-2342-10-3 (20 January 2010).

  21. Rovati, L.C. Radiographic assessment. Introduction: existing methodology. Osteoarthritis Cartilage 7, 427–429 (1999).

    Article  CAS  Google Scholar 

  22. Hunter, D.J. & Felson, D.T. Osteoarthritis. BMJ 332, 639–642 (2006).

    Article  Google Scholar 

  23. Jackson, D.W., Simon, T.M. & Aberman, H.M. Symptomatic articular cartilage degeneration: the impact in the new millennium. Clin. Orthop. Relat. Res. 391 Suppl, 14–25 (2001).

    Article  Google Scholar 

  24. Davis, M.A., Ettinger, W.H., Neuhaus, J.M. & Hauck, W.W. Sex differences in osteoarthritis of the knee. The role of obesity. Am. J. Epidemiol. 127, 1019–1030 (1988).

    Article  CAS  Google Scholar 

  25. Coan, P. et al. In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs. Phys. Med. Biol. 55, 7649–7662 (2010).

    Article  Google Scholar 

  26. Dieppe, P.A. Recommended methodology for assessing the progression of osteoarthritis of the hip and knee joints. Osteoarthritis Cartilage 3, 73–77 (1995).

    Article  CAS  Google Scholar 

  27. Muraki, S. et al. Association of radiographic and symptomatic knee osteoarthritis with health-related quality of life in a population-based cohort study in Japan: the ROAD study. Osteoarthritis Cartilage 18, 1227–1234 (2010).

    Article  CAS  Google Scholar 

  28. Szebenyi, B. et al. Associations between pain, function, and radiographic features in osteoarthritis of the knee. Arthritis Rheum. 54, 230–235 (2006).

    Article  Google Scholar 

  29. Mollenhauer, J. et al. Diffraction-enhanced X-ray imaging of articular cartilage. Osteoarthritis Cartilage 10, 163–171 (2002).

    Article  CAS  Google Scholar 

  30. Messner, K., Fahlgren, A., Persliden, J. & Andersson, B.M. Radiographic joint space narrowing and histologic changes in a rabbit meniscectomy model of early knee osteoarthrosis. Am. J. Sports Med. 29, 151–160 (2001).

    Article  CAS  Google Scholar 

  31. Lietman, S.A., Miyamoto, S., Brown, P.R., Inoue, N. & Reddi, A.H. The temporal sequence of spontaneous repair of osteochondral defects in the knees of rabbits is dependent on the geometry of the defect. J. Bone Joint Surg. Br. 84, 600–606 (2002).

    Article  CAS  Google Scholar 

  32. Otsuka, Y. et al. Requirement of fibroblast growth factor signaling for regeneration of epiphyseal morphology in rabbit full-thickness defects of articular cartilage. Dev. Growth Differ. 39, 143–156 (1997).

    Article  CAS  Google Scholar 

  33. Little, C.B. & Smith, M.M. Animal models of osteoarthritis. Current Rheumatology Reviews 4, 175–182 (2008).

    Article  CAS  Google Scholar 

  34. Chu, C.R., Szczodry, M. & Bruno, S. Animal models for cartilage regeneration and repair. Tissue Eng. Part B Rev. 6, 105–115 (2010).

    Article  Google Scholar 

  35. Mitchell, N. & Shepard, N. The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. J. Bone Joint Surg. Am. 58, 230–233 (1976).

    Article  CAS  Google Scholar 

  36. Verwoerd-Verhoef, H.L., ten Koppel, P.G., van Osch, G.J., Meeuwis, C.A. & Verwoerd, C.D. Wound healing of cartilage structures in the head and neck region. Int. J. Pediatr. Otorhinolaryngol. 43, 241–251 (1998).

    Article  CAS  Google Scholar 

  37. Hunziker, E.B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10, 432–463 (2002).

    Article  CAS  Google Scholar 

  38. Wei, X., Gao, J. & Messner, K. Maturation-dependent repair of untreated osteochondral defects in the rabbit knee joint. J. Biomed. Mater. Res. 34, 63–72 (1997).

    Article  CAS  Google Scholar 

  39. Shapiro, F., Koide, S. & Glimcher, M.J. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J. Bone Joint Surg. Am. 75, 532–553 (1993).

    Article  CAS  Google Scholar 

  40. Kaweblum, M. et al. Histological and radiographic determination of the age of physeal closure of the distal femur, proximal tibia, and proximal fibula of the New Zealand white rabbit. J. Orthop. Res. 12, 747–749 (1994).

    Article  CAS  Google Scholar 

  41. Silver, F.H. & Glasgold, A.I. Cartilage wound healing. An overview. Otolaryngol. Clin. North Am. 28, 847–864 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the US National Institutes of Health and an Innovative Research Grant from the Arthritis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriacos A. Athanasiou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arzi, B., Wisner, E., Huey, D. et al. A proposed model of naturally occurring osteoarthritis in the domestic rabbit. Lab Anim 41, 20–25 (2012). https://doi.org/10.1038/laban0112-20

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban0112-20

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing