Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Note
  • Published:

Blood biochemical changes in pigs after infusion with acetate-buffered or lactate-buffered crystalloid solutions

Abstract

Perioperative fluid therapy is an important component of many medical procedures with animals. Buffered crystalloid solutions avoid inducing metabolic acidosis, but lactated solutions can elevate blood lactate concentrations and acetated solutions have not been thoroughly investigated using large animals. Here, the authors compare blood biochemical parameters in 20 juvenile pigs after perioperative fluid administration of an acetate-buffered solution (Elo-Mel isoton, EMI) or a lactate-buffered solution (lactated Ringer's solution, LRS). The authors measured blood lactate, glucose and electrolyte concentrations before and after administering the test fluid during surgery. Blood lactate concentration after administration was significantly higher in pigs that received LRS than in pigs that received EMI, but glucose and electrolyte concentrations did not differ significantly between treatment groups before or after administration. These findings suggest that EMI might be a preferable option for perioperative fluid therapy in pigs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blood lactate concentration before and after infusion of lactate-buffered (LRS) or acetate-buffered (EMI) crystalloid solution.

Similar content being viewed by others

References

  1. Szrama, J. & Smuszkiewicz, P. Acid-base disorder analysis during diabetic ketoacidosis using the Stewart approach—a case report. Anaesthesiol. Intensive Ther. 45, 230–234 (2013).

    Article  Google Scholar 

  2. Guidet, B. et al. A balanced view of balanced solutions. Crit. Care 14, 325 (2010).

    Article  Google Scholar 

  3. Zander, R. Flüssigkeitstherapie (Bibliomed–Medizinische Verlagsgesellschaft mbH, Melsungen, Germany, 2009).

    Google Scholar 

  4. Smith, I. et al. Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med. 27, 74–83 (2001).

    Article  CAS  Google Scholar 

  5. Vincent, J.-L. & Gottin, L. Type of fluid in severe sepsis and septic shock. Minerva Anestesiol. 77, 1190–1196 (2011).

    PubMed  Google Scholar 

  6. Saidenberg, E. & Tinmouth, A. Ringer's lactate and red blood cells: is there sufficient evidence to recommend for routine use? Can. J. Anaesth. 56, 343–347 (2009).

    Article  Google Scholar 

  7. Kirkendol, P.L., Robie, N.W., Gonzalez, F.M. & Devia, C.J. Cardiac and vascular effects of infused sodium acetate in dogs. Trans. Am. Soc. Artif. Intern. Organs 24, 714–718 (1978).

    CAS  PubMed  Google Scholar 

  8. Von Engelhardt, W. & Breves, G. (eds.) Physiologie der Haustiere 4th edn. (Enke, Stuttgart, Germany, 2015).

    Book  Google Scholar 

  9. Richards, R.H. et al. Acetate metabolism in normal human subjects. Am. J. Kidney Dis. 2, 47–57 (1982).

    Article  CAS  Google Scholar 

  10. Aizawa, Y. et al. Depressant action of acetate upon the human cardiovascular system. Clin. Nephrol. 8, 477–480 (1977).

    CAS  PubMed  Google Scholar 

  11. Nitenberg, A., Huyghebaert, M.F., Blanchet, F. & Amiel, C. Analysis of increased myocardial contractility during sodium acetate infusion in humans. Kidney Int. 26, 744–751 (1984).

    Article  CAS  Google Scholar 

  12. Berkelhammer, C.H., Wood, R.J. & Sitrin, M.D. Acetate and hypercalciuria during total parenteral nutrition. Am. J. Clin. Nutr. 48, 1482–1489 (1988).

    Article  CAS  Google Scholar 

  13. Hayat, J.C. The treatment of lactic acidosis in the diabetic patient by peritoneal dialysis using sodium acetate. A report of two cases. Diabetologia 10, 485–487 (1974).

    Article  CAS  Google Scholar 

  14. Kveim, M.H. & Nesbakken, R. Acetate metabolizing capacity in man. J. Oslo City Hosp. 30, 101–104 (1980).

    CAS  PubMed  Google Scholar 

  15. Roger, C. et al. Does the type of fluid affect rapidity of shock reversal in an anaesthetized-piglet model of near-fatal controlled haemorrhage? A randomized study. Br. J. Anaesth. 112, 1015–1023 (2014).

    Article  CAS  Google Scholar 

  16. Martini, W.Z. Fibrinogen availability and coagulation function after hemorrhage and resuscitation in pigs. Mol. Med. 17, 757–761 (2011).

    Article  CAS  Google Scholar 

  17. Guerci, P. et al. Impact of fluid resuscitation with hypertonic-hydroxyethyl starch versus lactated ringer on hemorheology and microcirculation in hemorrhagic shock. Clin. Hemorheol. Microcirc. 56, 301–317 (2014).

    CAS  PubMed  Google Scholar 

  18. Zaar, M. et al. Initial administration of hydroxyethyl starch vs lactated Ringer after liver trauma in the pig. Br. J. Anaesth. 102, 221–226 (2009).

    Article  CAS  Google Scholar 

  19. Ishihara, S. et al. Inhaled nitric oxide prevents left ventricular impairment during endotoxemia. J. Appl. Physiol. 85, 2018–2024 (1998).

    Article  CAS  Google Scholar 

  20. Haga, H.A., Ranheim, B. & Spadavecchia, C. Effects of isoflurane upon minimum alveolar concentration and cerebral cortex depression in pigs and goats: an interspecies comparison. Vet. J. 187, 217–220 (2011).

    Article  CAS  Google Scholar 

  21. Schwarzl, M. et al. Mild hypothermia attenuates circulatory and pulmonary dysfunction during experimental endotoxemia. Crit. Care Med. 41, e401–e410 (2013).

    Article  CAS  Google Scholar 

  22. Branski, L.K. et al. A porcine model of full-thickness burn, excision and skin autografting. Burns 34, 1119–1127 (2008).

    Article  Google Scholar 

  23. Fortelny, R.H. et al. The feasibility of FS mesh fixation by a transgastric approach—an important benefit in future NOTES procedures? J. Surg. Res. 171, 80–86 (2011).

    Article  Google Scholar 

  24. Mohr, J. et al. Induced hypothermia does not impair coagulation system in a swine multiple trauma model. J. Trauma Acute Care Surg. 74, 1014–1020 (2013).

    Article  CAS  Google Scholar 

  25. Schlimp, C.J. et al. Recovery of fibrinogen concentrate after intraosseous application is equivalent to the intravenous route in a porcine model of hemodilution. J. Trauma Acute Care Surg. 76, 1235–1242 (2014).

    Article  CAS  Google Scholar 

  26. Swindle, M.M., Smith, A.C. & Hepburn, B.J. Swine as models in experimental surgery. J. Invest. Surg. 1, 65–79 (1988).

    Article  CAS  Google Scholar 

  27. Sipos, W. et al. Changes in interleukin-10 mRNA expression are predictive for 9-day survival of pigs in an emergency preservation and resuscitation model. Resuscitation 81, 603–608 (2010).

    Article  CAS  Google Scholar 

  28. Sipos, W. et al. OPG-Fc treatment in growing pigs leads to rapid reductions in bone resorption markers, serum calcium, and bone formation markers. Horm. Metab. Res. 43, 944–949 (2011).

    Article  CAS  Google Scholar 

  29. Sipos, W. et al. Escin inhibits type I allergic dermatitis in a novel porcine model. Int. Arch. Allergy Immunol. 161, 44–52 (2013).

    Article  CAS  Google Scholar 

  30. Keibl, C., Kerbl, M. & Schlimp, C.J. Comparison of Ringer's solution with 0.4% glucose or without in intraoperative infusion regimens for the prevention of hypoglycemia in juvenile pigs. Lab. Anim. 48, 170–176 (2014).

    Article  CAS  Google Scholar 

  31. Weihs, W. et al. Outcome after resuscitation using controlled rapid extracorporeal cooling to a brain temperature of 30 degrees C, 24 degrees C and 18 degrees C during cardiac arrest in pigs. Resuscitation 81, 242–247 (2010).

    Article  Google Scholar 

  32. Janata, A. et al. Emergency preservation and resuscitation improve survival after 15 minutes of normovolemic cardiac arrest in pigs. Crit. Care Med. 35, 2785–2791 (2007).

    PubMed  Google Scholar 

  33. Baumgartner, W. (ed.) Klinische Propädeutik der Haus- und Heimtiere 7th edn. (Parey, Stuttgart, Germany, 2009).

    Google Scholar 

  34. Hofmaier, F., Dinger, K., Braun, R. & Sterner-Kock, A. Range of blood lactate values in farm pigs prior to experimental surgery. Lab. Anim. 47, 130–132 (2013).

    Article  CAS  Google Scholar 

  35. Reiner, G., Hepp, S. & Hertrampf, B. Genetisch determinierte varianzanteile klinisch-chemischer laborparameter beim schwein. Tierärztliche Praxis Großtiere 34, 40–49 (2006).

    Article  Google Scholar 

  36. Rivers, E.P., Jaehne, A.K., Eichhorn-Wharry, L., Brown, S. & Amponsah, D. Fluid therapy in septic shock. Curr. Opin. Crit. Care 16, 297–308 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Keibl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keibl, C., Sipos, W., Ponschab, M. et al. Blood biochemical changes in pigs after infusion with acetate-buffered or lactate-buffered crystalloid solutions. Lab Anim 44, 268–273 (2015). https://doi.org/10.1038/laban.739

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing