Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Note
  • Published:

Effects of different blood collection methods on indicators of welfare in mice

Abstract

Blood collection is a common experimental procedure for which there are many different methods, each with its own advantages and disadvantages. Researchers should use methods that minimize pain, suffering, distress and lasting harm to animals while meeting study requirements. The authors evaluated stress, activity and tissue damage in BALB/cO1aHsd mice after collecting blood using one of six methods: retrobulbar bleeding with thin or thick capillaries, tail vein bleeding, saphenous vein bleeding, facial vein bleeding or jugular vein bleeding. The authors compared in-cage activity, corticosterone concentration and performance in open-field tests between treatment groups and collected histologic samples at 1 h, 3 d and 14 d after bleeding. Mice that underwent retrobulbar bleeding with a thick capillary had a smaller change in corticosterone concentration and higher in-cage activity immediately after blood collection, whereas mice that underwent jugular vein bleeding had a greater change in corticosterone concentration and lower in-cage activity and open-field activity. Mice that underwent saphenous vein bleeding had a high incidence of histological change at 1 h, 3 d and 14 d after blood collection, but few indicators of histological change were present in other groups at 14 d after blood collection. These results suggest that, when collecting a small volume of blood, retrobulbar bleeding with a thick capillary and without anesthesia causes the least stress in mice, whereas jugular vein bleeding and facial vein bleeding cause the most stress and saphenous vein bleeding causes the most lasting damage in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Jugular vein bleeding.
Figure 2: Retrobulbar bleeding.
Figure 3: Tail vein bleeding.
Figure 4: Saphenous vein bleeding.
Figure 5: Facial vein bleeding.
Figure 6: Length of time spent on just the bleeding technique was significantly shorter for RBBA and FVB than for SVB and JVB and was significantly longer for TVB than for any other technique.
Figure 7: Average in-cage activity level was significantly lower for mice that underwent JVB and FVB than for all other groups.
Figure 8: Corticosterone concentration was significantly higher after treatment than before treatment for all treatment groups.
Figure 9: Latency to move toward the edge of the apparatus in the open-field test was significantly longer for mice that underwent JVB than for all other groups.
Figure 10: Total distance traveled in the open-field test was significantly shorter for mice that underwent JVB or FVB than for mice that underwent TVB or SVB, and mice that underwent JVB traveled significantly less than mice that underwent RBBA.

Similar content being viewed by others

References

  1. European Union. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union L276, 33–79 (2010).

  2. Gesellschaft für Versuchstierkunde/Society of Laboratory Animal Science. Empfehlung zur Blutentnahme bei Versuchstieren, insbesondere kleinen Versuchstieren (Gesellschaft für Versuchstierkunde/Society of Laboratory Animal Science, 2009). http://www.gv-solas.de/fileadmin/user_upload/pdf_publikation/tie_blutentnahme09.pdf.

  3. Diehl, K.H. et al. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J. Appl. Toxicol. 21, 15–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. US National Institutes of Health. Guidelines for Survival Bleeding of Mice and Rats (US National Institutes of Health, Bethesda, MD, 2012).

  5. Fitzner Toft, M., Petersen, M.H., Dragsted, N. & Hansen, A.K. The impact of different blood sampling methods on laboratory rats under different types of anaesthesia. Lab. Anim. 40, 261–274 (2006).

    Article  PubMed  Google Scholar 

  6. Holmberg, H., Kiersgaard, M.K., Mikkelsen, L.F. & Tranholm, M. Impact of blood sampling technique on blood quality and animal welfare in haemophilic mice. Lab. Anim. 45, 114–120 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Sharma, A. et al. Safety and blood sample volume and quality of a refined retro-orbital bleeding technique in rats using a lateral approach. Lab Anim. (NY) 43, 63–66 (2014).

    Article  Google Scholar 

  8. Van Herck, H. et al. Orbital sinus blood sampling in rats as performed by different animal technicians: the influence of technique and expertise. Lab. Anim. 32, 377–386 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Van Herck, H. et al. Histological changes in the orbital region of rats after orbital puncture. Lab. Anim. 26, 53–58 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Heimann, M., Kasermann, H.P., Pfister, R., Roth, D.R. & Burki, K. Blood collection from the sublingual vein in mice and hamsters: a suitable alternative to retrobulbar technique that provides large volumes and minimizes tissue damage. Lab. Anim. 43, 255–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Bazare Jr., J., Leamons, M.L. & Young, J.F. Sampling methods for pharmacokinetic studies in the mouse. J. Pharmacol. Methods 5, 99–120 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Omaye, S.T., Skala, J.H., Gretz, M.D., Schaus, E.E. & Wade, C.E. Simple method for bleeding the unanaesthetized rat by tail venipuncture. Lab. Anim. 21, 261–264 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Madetoja, J., Madetoja, M., Mäkinen, J., Riuttala, E. & Jokinen, J. Blood Sampling from the tail vein, in comparison with two other techniques, causes less stress to mice. Scand. J. Lab. Anim. Sci. 36, 215–221 (2009).

    CAS  Google Scholar 

  14. Hui, Y.H. et al. Pharmacokinetic comparisons of tail-bleeding with cannula- or retro-orbital bleeding techniques in rats using six marketed drugs. J. Pharmacol. Toxicol. Methods 56, 256–264 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Aasland, K.E., Skjerve, E. & Smith, A.J. Quality of blood samples from the saphenous vein compared with the tail vein during multiple blood sampling of mice. Lab. Anim. 44, 25–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Müller, B. Blutentnahme aus dem retroorbitalen Venenplexus, den Schwanzvenen und dem jugularen Venenwinkel bei Ratte und Maus: Vergleichende Hämatologisch/Biochemische und Klinische Untersuchungen (Justus-Liebig-Universität, Giessen, Germany, 1999).

    Google Scholar 

  17. Hem, A., Smith, A.J. & Solberg, P. Saphenous vein puncture for blood sampling of the mouse, rat, hamster, gerbil, guinea pig, ferret and mink. Lab. Anim. 32, 364–368 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Abatan, O.I., Welch, K.B. & Nemzek, J.A. Evaluation of saphenous venipuncture and modified tail-clip blood collection in mice. J. Am. Assoc. Lab. Anim. Sci. 47, 8–15 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mazlan, N.H. et al. Comparison of two blood sampling methods in mice in order to increase animal welfare and the reliability of experimental results. Exp. Anim. 60, 226 (2011).

    Google Scholar 

  20. Mitchell, S. Venipuncture techniques in pet rodent species. J. Exotic Pet Med. 20, 284–293 (2011).

    Article  Google Scholar 

  21. Teilmann, A.C., Kalliokoski, O., Sorensen, D.B., Hau, J. & Abelson, K.S. Manual versus automated blood sampling: impact of repeated blood sampling on stress parameters and behavior in male NMRI mice. Lab. Anim. 48, 278–291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Golde, W.T., Gollobin, P. & Rodriguez, L.L. A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab. Anim. (NY) 34, 39–43 (2005).

    Article  Google Scholar 

  23. Schlichting, A., Tsai, P.-P., Stelzer, H.D. & Hackbarth, H. Vergleich der retrobulbären Blutentnahme mit der Punktion der V. facialis im Hinblick auf Tierschutzgerechtigkeit (45th Scientific meeting of GV-SOLAS, Dresden, Germany, 2008).

    Google Scholar 

  24. Kassel, R. & Levitan, S. A jugular technique for the repeated bleeding of small animals. Science 118, 563–564 (1953).

    Article  CAS  PubMed  Google Scholar 

  25. Meyer-Eilers, S. Vergleichende Histologische Untersuchung nach Wiederholter Blutentnahme aus dem Jugularen Venenwinkel bei Mäusen und Ratten (Luwig-Maximilians-Universität, Munich, Germany, 2000).

    Google Scholar 

  26. Shirasaki, Y., Ito, Y., Kikuchi, M., Imamura, Y. & Hayashi, T. Validation studies on blood collection from the jugular vein of conscious mice. J. Am. Assoc. Lab. Anim. Sci. 51, 345–351 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Herck, H. et al. Endocrine stress response in rats subjected to singular orbital puncture while under diethyl-ether anaesthesia. Lab. Anim. 25, 325–329 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Van Herck, H. et al. Orbital bleeding in rats while under diethylether anaesthesia does not influence telemetrically determined heart rate, body temperature, locomotor and eating activity when compared with anaesthesia alone. Lab. Anim. 31, 271–278 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Van Herck, H. et al. Blood sampling from the retro-orbital plexus, the saphenous vein and the tail vein in rats: comparative effects on selected behavioural and blood variables. Lab. Anim. 35, 131–139 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Vachon, P. & Moreau, J.P. Serum corticosterone and blood glucose in rats after two jugular vein blood sampling methods: comparison of the stress response. Contemp. Top. Lab. Anim. Sci. 40, 22–24 (2001).

    CAS  PubMed  Google Scholar 

  31. Christensen, S.D., Mikkelsen, L.F., Fels, J.J., Bodvarsdottir, T.B. & Hansen, A.K. Quality of plasma sampled by different methods for multiple blood sampling in mice. Lab. Anim. 43, 65–71 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Fernández, I., Pena, A., Del Teso, N., Perez, V. & Rodriguez-Cuesta, J. Clinical biochemistry parameters in C57BL/6J mice after blood collection from the submandibular vein and retroorbital plexus. J. Am. Assoc. Lab. Anim. Sci. 49, 202–206 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Chan, Y.K. et al. Influence of tail versus cardiac sampling on blood glucose and lipid profiles in mice. Lab. Anim. 46, 142–147 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Flint, M.S. & Tinkle, S.S. C57BL/6 mice are resistant to acute restraint modulation of cutaneous hypersensitivity. Toxicol. Sci. 62, 250–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Nyuyki, K.D., Maloumby, R., Reber, S.O. & Neumann, I.D. Comparison of corticosterone responses to acute stressors: chronic jugular vein versus trunk blood samples in mice. Stress 15, 618–626 (2012).

    Article  PubMed  Google Scholar 

  36. Ganea, K., Liebl, C., Sterlemann, V., Muller, M.B. & Schmidt, M.V. Pharmacological validation of a novel home cage activity counter in mice. J. Neurosci. Methods 162, 180–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Gould, T.D., Dao, D.T. & Kovacsics, C.E. The open field test. in Mood and Anxiety Related Phenotypes in Mice (ed. Gould, T.D.) 1–20 (Humana, New York, 2009).

    Chapter  Google Scholar 

  38. Kale, P.P., Addepalli, V. & Ghadawale, S.R. Impact of pre-exposure of tail suspension on behavioural parameters like locomotion, exploration, and anxiety in mice. Indian J. Exp. Biol. 51, 732–738 (2013).

    CAS  PubMed  Google Scholar 

  39. Liu, S.B. et al. Attenuation of reserpine-induced pain/depression dyad by gentiopicroside through downregulation of GluN2B receptors in the amygdala of mice. Neuromolecular Med. 16, 350–359 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Nicklas, W. et al. Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab. Anim. 36, 20–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Schlichting, A., Haberstroh, H., Tsai, P.-P., Stelzer, H.D. & Hackbarth, H. Stress Response of Mice under Different Volatile Anaesthesia (11th FELASA Symposium, Helsinki, Finland, 2010).

    Google Scholar 

  42. Tsai, P.P., Stelzer, H.D., Hedrich, H.J. & Hackbarth, H. Are the effects of different enrichment designs on the physiology and behaviour of DBA/2 mice consistent? Lab. Anim. 37, 314–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Corbach, S. Investigation of Carbon Dioxide–Euthanasia of Laboratory Mice Regarding Animal Welfare Aspects (School of Veterinary Medicine Hannover, Hannover, Germany, 2006).

    Google Scholar 

  44. Teilmann, A.C. et al. Physiological and pathological impact of blood sampling by retro-bulbar sinus puncture and facial vein phlebotomy in laboratory mice. PLoS One. Published online 26 November 2014 (10.1371/journal.pone.0113225).

  45. Weiss, J., Maeß, J. & Nebendahl, K. in Haus- und Versuchstierpflege 2nd edn. (Enke, Stuttgart, Germany, 2003).

    Google Scholar 

Download references

Acknowledgements

We thank the institutes that sent their well-trained technicians or researchers to Hannover to participate in this study for their support. Parts of these results were presented as a poster at the 12th FELASA SECAL congress held 10–13 June 2013 in Barcelona, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansjoachim Hackbarth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, PP., Schlichtig, A., Ziegler, E. et al. Effects of different blood collection methods on indicators of welfare in mice. Lab Anim 44, 301–310 (2015). https://doi.org/10.1038/laban.738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing