Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Current options for providing sustained analgesia to laboratory animals

Abstract

The provision of adequate analgesia after an invasive procedure or for general pain management is an important component of laboratory animal care. Choosing the appropriate analgesic requires careful consideration by the investigators, the veterinary team and the institution's ethical review committee. Sustained-delivery analgesics are superior to analgesics with short durations of action because they do not need to be administered multiple times, reducing handling-induced stress to the animal, and they provide sustained plasma concentrations of the analgesic over the treatment period. The author reviews analgesic formulations that have durations of action longer than 12 h and up to 72 h. These options should be considered when appropriate for particular procedures and animal species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mohawk, J.A. & Lee, T.M. Restraint stress delays reentrainment in male and female diurnal and nocturnal rodents. J. Biol. Rhythms 20, 245–256 (2005).

    Article  PubMed  Google Scholar 

  2. Abelson, K.S., Jacobsen, K.R., Sundbom, R., Kalliokoski, O. & Hau, J. Voluntary ingestion of nut paste for administration of buprenorphine in rats and mice. Lab. Anim. 46, 349–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Goldkuhl, R., Hau, J. & Abelson, K.S. Effects of voluntarily-ingested buprenorphine on plasma corticosterone levels, body weight, water intake, and behaviour in permanently catheterised rats. In Vivo 24, 131–135 (2010).

    PubMed  Google Scholar 

  4. Liles, J.H., Flecknell, P.A., Roughan, J. & Cruz-Madorran, I. Influence of oral buprenorphine, oral naltrexone or morphine on the effects of laparotomy in the rat. Lab. Anim. 32, 149–161 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Heavner, J.E. & Cooper, D.M. in Anesthesia and Analgesia in Laboratory Animals, 2nd edn. (eds. Fish, R. E., Brown, M.J., Danneman, P.J. & Karas, A.Z.) 97–123 (Academic, London, UK, 2008).

    Book  Google Scholar 

  6. Leach, M.C., Bailey, H.E., Dickinson, A.L., Roughan, J.V. & Flecknell, P.A. A preliminary investigation into the practicality of use and duration of action of slow-release preparations of morphine and hydromorphone in laboratory rats. Lab. Anim. 44, 59–65 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Cooper, D.M., DeLong, D. & Gillett, C.S. Analgesic efficacy of acetaminophen and buprenorphine administered in the drinking water of rats. Contemp. Top. Lab. Anim. Sci. 36, 58–62 (1997).

    CAS  PubMed  Google Scholar 

  8. Hayes, K.E., Raucci, J.A. Jr., Gades, N.M. & Toth, L.A. An evaluation of analgesic regimens for abdominal surgery in mice. Contemp. Top. Lab. Anim. Sci. 39, 18–23 (2000).

    CAS  PubMed  Google Scholar 

  9. Mickley, G.A., Hoxha, Z., Biada, J.M., Kenmuir, C.L. & Bacik, S.E. Acetaminophen self-administered in the drinking water increases the pain threshold of rats (Rattus norvegicus). J. Am. Assoc. Lab. Anim. Sci. 45, 48–54 (2006).

    CAS  PubMed  Google Scholar 

  10. Arras, M., Rettich, A., Cinelli, P., Kasermann, H.P. & Burki, K. Assessment of post-laparotomy pain in laboratory mice by telemetric recording of heart rate and heart rate variability. BMC Vet. Res. 3, 16 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stasiak, K.L., Maul, D., French, E., Hellyer, P.W. & VandeWoude, S. Species-specific assessment of pain in laboratory animals. Contemp. Top. Lab. Anim. Sci. 42, 13–20 (2003).

    CAS  PubMed  Google Scholar 

  12. Johnson, R.F. & Johnson, A.K. Light/dark cycle modulates food to water intake ratios in rats. Physiol. Behav. 48, 707–711 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Puryear, R., Rigatto, K.V., Amico, J.A. & Morris, M. Enhanced salt intake in oxytocin deficient mice. Exp. Neurol. 171, 323–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Bachmanov, A.A., Reed, D.R., Beauchamp, G.K. & Tordoff, M.G. Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav. Genet. 32, 435–443 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tordoff, M.G., Bachmanov, A.A. & Reed, D.R. Forty mouse strain survey of water and sodium intake. Physiol. Behav. 91, 620–631 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cowan, A., Doxey, J.C. & Harry, E.J. The animal pharmacology of buprenorphine, an oripavine analgesic agent. Br. J. Pharmacol. 60, 547–554 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hofmeister, E.H. & Egger, C.M. Transdermal fentanyl patches in small animals. J. Am. Anim. Hosp. Assoc. 40, 468–478 (2004).

    Article  PubMed  Google Scholar 

  18. Kurz, A. & Sessler, D.I. Opioid-induced bowel dysfunction: pathophysiology and potential new therapies. Drugs 63, 649–671 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Pairet, M. & Ruckebusch, Y. On the relevance of non-steroidal anti-inflammatory drugs in the prevention of paralytic ileus in rodents. J. Pharm. Pharmacol. 41, 757–761 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Jeal, W. & Benfield, P. Transdermal fentanyl. A review of its pharmacological properties and therapeutic efficacy in pain control. Drugs 53, 109–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Kyles, A.E., Papich, M. & Hardie, E.M. Disposition of transdermally administered fentanyl in dogs. Am. J. Vet. Res. 57, 715–719 (1996).

    CAS  PubMed  Google Scholar 

  22. Kyles, A.E., Hardie, E.M., Hansen, B.D. & Papich, M.G. Comparison of transdermal fentanyl and intramuscular oxymorphone on post-operative behaviour after ovariohysterectomy in dogs. Res. Vet. Sci. 65, 245–251 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Egger, C.M., Glerum, L.E., Allen, S.W. & Haag, M. Plasma fentanyl concentrations in awake cats and cats undergoing anesthesia and ovariohysterectomy using transdermal administration. Vet. Anaesth. Analg. 30, 229–236 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Glerum, L.E., Egger, C.M., Allen, S.W. & Haag, M. Analgesic effect of the transdermal fentanyl patch during and after feline ovariohysterectomy. Vet. Surg. 30, 351–358 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, D.D., Papich, M.G. & Hardie, E.M. Comparison of pharmacokinetics of fentanyl after intravenous and transdermal administration in cats. Am. J. Vet. Res. 61, 672–677 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Foley, P.L., Henderson, A.L., Bissonette, E.A., Wimer, G.R. & Feldman, S.H. Evaluation of fentanyl transdermal patches in rabbits: blood concentrations and physiologic response. Comp. Med. 51, 239–244 (2001).

    CAS  PubMed  Google Scholar 

  27. Harvey-Clark, C.J., Gilespie, K. & Riggs, K.W. Transdermal fentanyl compared with parenteral buprenorphine in post-surgical pain in swine: a case study. Lab. Anim. 34, 386–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Malavasi, L.M., Augustsson, H., Jensen-Waern, M. & Nyman, G. The effect of transdermal delivery of fentanyl on activity in growing pigs. Acta Vet. Scand. 46, 149–157 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Malavasi, L.M., Nyman, G., Augustsson, H., Jacobson, M. & Jensen-Waern, M. Effects of epidural morphine and transdermal fentanyl analgesia on physiology and behaviour after abdominal surgery in pigs. Lab. Anim. 40, 16–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Wilkinson, A.C., Thomas, M.L. 3rd & Morse, B.C. Evaluation of a transdermal fentanyl system in yucatan miniature pigs. Contemp. Top. Lab. Anim. Sci. 40, 12–16 (2001).

    CAS  PubMed  Google Scholar 

  31. Ahern, B.J., Soma, L.R., Boston, R.C. & Schaer, T.P. Comparison of the analgesic properties of transdermally administered fentanyl and intramuscularly administered buprenorphine during and following experimental orthopedic surgery in sheep. Am. J. Vet. Res. 70, 418–422 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Ahern, B.J., Soma, L.R., Rudy, J.A., Uboh, C.E. & Schaer, T.P. Pharmacokinetics of fentanyl administered transdermally and intravenously in sheep. Am. J. Vet. Res. 71, 1127–1132 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Nexcyon Pharmaceuticals Inc. Recuvyra Fentanyl Transdermal Solution Dogs: For the control of postoperative pain associated with surgical procedures in dogs. NADA 141-337. FDA http://www.fda.gov/downloads/AnimalVeterinary/Products/ApprovedAnimalDrugProducts/FOIADrugSummaries/UCM314828.pdf (2012).

  34. Freise, K.J., Linton, D.D., Newbound, G.C., Tudan, C. & Clark, T.P. Population pharmacokinetics of transdermal fentanyl solution following a single dose administered prior to soft tissue and orthopedic surgery in dogs. J. Vet. Pharmacol. Ther. 35 (suppl. 2), 65–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Freise, K.J., Newbound, G.C., Tudan, C. & Clark, T.P. Pharmacokinetics and the effect of application site on a novel, long-acting transdermal fentanyl solution in healthy laboratory Beagles. J. Vet. Pharmacol. Ther. 35 (suppl. 2), 27–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Freise, K.J. et al. Pharmacokinetics and dose selection of a novel, long-acting transdermal fentanyl solution in healthy laboratory Beagles. J. Vet. Pharmacol. Ther. 35 (suppl. 2), 21–26 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Linton, D.D., Wilson, M.G., Newbound, G.C., Freise, K.J. & Clark, T.P. The effectiveness of a long-acting transdermal fentanyl solution compared to buprenorphine for the control of postoperative pain in dogs in a randomized, multicentered clinical study. J. Vet. Pharmacol. Ther. 35, 53–64 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Savides, M.C. et al. The margin of safety of a single application of transdermal fentanyl solution when administered at multiples of the therapeutic dose to laboratory dogs. J. Vet. Pharmacol. Ther. 35 (suppl. 2), 35–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Roy, S.D. & Flynn, G.L. Transdermal delivery of narcotic analgesics: pH, anatomical, and subject influences on cutaneous permeability of fentanyl and sufentanil. Pharm. Res. 7, 842–847 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Deschamps, J.Y. et al. Fatal overdose after ingestion of a transdermal fentanyl patch in two non-human primates. Vet. Anaesth. Analg. 39, 653–656 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Freise, K.J., Newbound, G.C., Tudan, C. & Clark, T.P. Naloxone reversal of an overdose of a novel, long-acting transdermal fentanyl solution in laboratory Beagles. J. Vet. Pharmacol. Ther. 35 (suppl. 2), 45–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Cowan, A., Lewis, J.W. & Macfarlane, I.R. Agonist and antagonist properties of buprenorphine, a new antinociceptive agent. Br. J. Pharmacol. 60, 537–545 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dahan, A. et al. Comparison of the respiratory effects of intravenous buprenorphine and fentanyl in humans and rats. Br. J. Anaesth. 94, 825–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Hans, G. & Robert, D. Transdermal buprenorphine—a critical appraisal of its role in pain management. J. Pain Res. 2, 117–134 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Murrell, J.C. et al. Use of a transdermal matrix patch of buprenorphine in cats: preliminary pharmacokinetic and pharmacodynamic data. Vet. Rec. 160, 578–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Boas, R.A. & Villiger, J.W. Clinical actions of fentanyl and buprenorphine. The significance of receptor binding. Br. J. Anaesth. 57, 192–196 (1985).

    Article  CAS  PubMed  Google Scholar 

  47. Moll, X., Fresno, L., García, F., Prandi, D. & Andaluz, A. Comparison of subcutaneous and transdermal administration of buprenorphine for pre-emptive analgesia in dogs undergoing elective ovariohysterectomy. Vet. J. 187, 124–128 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Pieper, K., Schuster, T., Levionnois, O., Matis, U. & Bergadano, A. Antinociceptive efficacy and plasma concentrations of transdermal buprenorphine in dogs. Vet. J. 187, 335–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Andaluz, A. et al. Plasma buprenorphine concentrations after the application of a 70 microg/h transdermal patch in dogs. Preliminary report. J. Vet. Pharmacol. Ther. 32, 503–505 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Park, I. et al. Buprederm, a new transdermal delivery system of buprenorphine: pharmacokinetic, efficacy and skin irritancy studies. Pharm. Res. 25, 1052–1062 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Yun, M., Jeong, S., Pai, C. & Kim, S. Pharmacokinetic-pharmacodynamic modeling of the analgesic effect of bupredermTM, in mice. Health 2, 824–831 (2010).

    Article  Google Scholar 

  52. Plosker, G.L. & Lyseng-Williamson, K.A. Buprenorphine 5, 10 and 20 μg/h transdermal patch: a guide to its use in chronic non-malignant pain. CNS Drugs 26, 367–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Mazières, B. Topical ketoprofen patch. Drugs R. D. 6, 337–344 (2005).

    Article  PubMed  Google Scholar 

  54. Bergese, S.D. et al. Efficacy profile of liposome bupivacaine, a novel formulation of bupivacaine for postsurgical analgesia. J. Pain Res. 5, 107–116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Richard, B.M. et al. Safety evaluation of EXPAREL (DepoFoam Bupivacaine) administered by repeated subcutaneous injection in rabbits and dogs: species comparison. J. Drug Deliv. 2011, 467429 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Richard, B.M. et al. The safety of EXPAREL® (Bupivacaine Liposome Injectable Suspension) administered by peripheral nerve block in rabbits and dogs. J. Drug Deliv. 2012, 962101 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Krugner-Higby, L. et al. Liposome-encapsulated oxymorphone hydrochloride provides prolonged relief of postsurgical visceral pain in rats. Comp. Med. 53, 270–279 (2003).

    CAS  PubMed  Google Scholar 

  58. Clark, M.D. et al. Evaluation of liposome-encapsulated oxymorphone hydrochloride in mice after splenectomy. Comp. Med. 54, 558–563 (2004).

    CAS  PubMed  Google Scholar 

  59. Smith, L.J. et al. Pharmacokinetics of a controlled-release liposome-encapsulated hydromorphone administered to healthy dogs. J. Vet. Pharmacol. Ther. 31, 415–422 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krugner-Higby, L. et al. Experimental pharmacodynamics and analgesic efficacy of liposome-encapsulated hydromorphone in dogs. J. Am. Anim. Hosp. Assoc. 47, 185–195 (2011).

    Article  PubMed  Google Scholar 

  61. Krugner-Higby, L. et al. Pharmacokinetics and behavioral effects of an extended-release, liposome-encapsulated preparation of oxymorphone in rhesus macaques. J. Pharmacol. Exp. Ther. 330, 135–141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Krugner-Higby, L. et al. Pharmacokinetics and behavioral effects of liposomal hydromorphone suitable for perioperative use in rhesus macaques. Psychopharmacology (Berl.) 216, 511–523 (2011).

    Article  CAS  Google Scholar 

  63. Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 52, 1145–1149 (1963).

    Article  CAS  PubMed  Google Scholar 

  64. Liechty, W.B., Kryscio, D.R., Slaughter, B.V. & Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 1, 149–173 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Carbone, E.T., Lindstrom, K.E., Diep, S. & Carbone, L. Duration of action of sustained-release buprenorphine in 2 strains of mice. J. Am. Assoc. Lab. Anim. Sci. 51, 815–819 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Foley, P.L., Liang, H. & Crichlow, A.R. Evaluation of a sustained-release formulation of buprenorphine for analgesia in rats. J. Am. Assoc. Lab. Anim. Sci. 50, 198–204 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chum, H. et al. Analgesic effects of sustained release buprenorphine in an incisional model of hyperalgesia in rats (Rattus norvegicus). AALAS National Meeting, Minneapolis, MN, 4–8 November 2012.

  68. Catbagan, D.L., Quimby, J.M., Mama, K.R., Rychel, J.K. & Mich, P.M. Comparison of the efficacy and adverse effects of sustained-release buprenorphine hydrochloride following subcutaneous administration and buprenorphine hydrochloride following oral transmucosal administration in cats undergoing ovariohysterectomy. Am. J. Vet. Res. 72, 461–466 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Nunamaker, E.A. et al. Pharmacokinetics of 2 formulations of buprenorphine in macaques (Macaca mulatta and Macaca fascicularis). J. Am. Assoc. Lab. Anim. Sci. 52, 48–56 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pontani, R.B. & Misra, A.L. A long-acting buprenorphine delivery system. Pharmacol. Biochem. Behav. 18, 471–474 (1983).

    Article  CAS  PubMed  Google Scholar 

  71. Forbes, N. et al. Morbidity and mortality rates associated with serial bleeding from the superficial temporal vein in mice. Lab Anim. (NY) 39, 236–240 (2010).

    Article  Google Scholar 

  72. Flecknell, P.A. Analgesia of small mammals. Vet. Clin. North Am. Exot. Anim. Pract. 4, 47–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Abelson, A.L. et al. Use of wound soaker catheters for the administration of local anesthetic for post-operative analgesia: 56 cases. Vet. Anaesth. Analg. 36, 597–602 (2009).

    Article  PubMed  Google Scholar 

  74. Armitage-Chan, E. Use of wound soaker catheters in pain management. In Practice 35, 24–29 (2013).

    Article  Google Scholar 

  75. Hutchings, D.E., Zmitrovich, A.C., Hamowy, A.S. & Liu, P.Y. Prenatal administration of buprenorphine using the osmotic minipump: a preliminary study of maternal and offspring toxicity and growth in the rat. Neurotoxicol. Teratol. 17, 419–423 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia L. Foley.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foley, P. Current options for providing sustained analgesia to laboratory animals. Lab Anim 43, 364–371 (2014). https://doi.org/10.1038/laban.590

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing