Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Note
  • Published:

Behavioral, clinical and pathological effects of multiple daily intraperitoneal injections on female mice

Abstract

Pharmacological agents are commonly administered to mice through multiple intraperitoneal (i.p.) injections. The i.p. route of administration is usually considered safe, but questions of animal welfare arise when protocols require that multiple injections be given to the same animal. IACUCs must consider the potential risks associated with multiple i.p. injections in order to determine the maximum number of injections an animal can receive within a study protocol, but there are no published studies of such potential risks. The authors investigated the effects of 30 daily i.p. saline injections on the behavior, body condition, weight, fecal corticosterone levels, hematology and pathology of female adult mice. Results indicate that multiple i.p. injections do not cause any ill effects in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mean body weights of control mice, mice undergoing needle puncture (NP) and mice undergoing saline injection (SI).
Figure 2
Figure 3: Normal abdominal wall of a control mouse (stained with H&E) with no significant lesions.
Figure 4: A mesothelial hyperplasia with minimal neutrophilic inflammation (asterisks) in the abdominal wall of a mouse undergoing needle puncture (stained with H&E).
Figure 5: Focal epidermal hyperplasia with a linear tract of dermal inflammation extending into panniculus (circle) in the abdominal wall of a mouse undergoing needle puncture (stained with H&E).

Similar content being viewed by others

References

  1. Morton, D.B. et al. Refining procedures for the administration of substances. Report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. British Veterinary Association Animal Welfare Foundation/Fund for the Replacement of Animals in Medical Experiments/Royal Society for the Prevention of Cruelty to Animals/Universities Federation for Animal Welfare. Lab. Anim. 35, 1–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Shimizu, S. in The Laboratory Mouse (ed. Hedrich, H.) 527–541 (Academic Press, Oxford, UK, 2004).

    Book  Google Scholar 

  3. van der Zwaal, E.M., Luijendijk, M.C., Adan, R.A. & la Fleur, S.E. Olanzapine-induced weight gain: chronic infusion using osmotic minipumps does not result in stable plasma levels due to degradation of olanzapine in solution. Eur. J. Pharmacol. 585, 130–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Löscher, W. The pharmacokinetics of antiepileptic drugs in rats: consequences for maintaining effective drug levels during prolonged drug administration in rat models of epilepsy. Epilepsia 48, 1245–1258 (2007).

    Article  PubMed  Google Scholar 

  5. Gaines Das, R. & North, D. Implications of experimental technique for analysis and interpretation of data from animal experiments: outliers and increased variability resulting from failure of intraperitoneal injection procedures. Lab. Anim. 41, 312–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Gad, S.C. in Animal Models in Toxicology 2nd edn. (ed. Gad, S.C.) 58–72 (CRC Press, Boca Raton, FL, 2007).

    Google Scholar 

  7. Claassen, V. (ed.) in Techniques in the Behavioral and Neural Sciences, Vol. 12 (ed. Huston, J.P.) 1–486 (Elsevier, Amsterdam, The Netherlands, 1994).

    Google Scholar 

  8. Diehl, K.H. et al. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J. Appl. Toxicol. 21, 15–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Nebendahl, K. in The Laboratory Rat (ed. Krinkle, G.J.) Ch. 24, 463–484 (Academic Press, London, UK, 2000).

    Book  Google Scholar 

  10. Svendsen, O., Kok, L. & Lauritzen, B. Nociception after intraperitoneal injection of a sodium pentobarbitone formulation with and without lidocaine in rats quantified by the expression of neuronal c-fos in the spinal cord—a preliminary study. Lab. Anim. 41, 197–203 (2006).

    Article  Google Scholar 

  11. Turner, P.V., Brabb, T., Pekow, C. & Vasbinder, M.A. Administration of substances to laboratory animals: routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci. 50, 600–613 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Arioli, V. & Rossi, E. Errors related to different techniques of intraperitoneal injection in mice. Appl. Microbiol. 19, 704–705 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Miner, N.A., Koehler, J. & Greenaway, L. Intraperitoneal injection in mice. Appl. Microbiol. 17, 250–251 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Steward, J.P., Ornellas, E.P., Beernink, K.D. & Northway, W.H. Errors in the technique of intraperitoneal injection of mice. Appl. Microbiol. 16, 1418–1419 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wiles, S., Crepin, V.F., Childs, G., Frankel, G. & Kerton, A. Use of biophotonic imaging as a training aid for administration of substances in laboratory rodents. Lab. Anim. 41, 321–328 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Dörr, W. & Weber-Frisch, M. Short-term immobilization of mice by methohexitone. Lab. Anim. 33, 35–40 (1999).

    Article  PubMed  Google Scholar 

  17. Groman, E.V. & Reinhardt, C.P. Method to quantify tail vein injection technique in small animals. Contemp. Top. Lab. Anim. Sci. 43, 35–38 (2004).

    CAS  PubMed  Google Scholar 

  18. Public Health Service. Policy on Humane Care and Use of Laboratory Animals (US Department of Health and Human Services, Washington, DC, 1986; reprinted 2002).

  19. Institute for Laboratory Animal Research, National Research Council. Guide for the Care and Use of Laboratory Animals (National Academy Press, Washington, DC, 2010).

  20. Ullman-Culleré, M.H. & Foltz, C.J. Body condition scoring: a rapid and accurate method for assessing health status in mice. Lab. Anim. Sci. 49, 319–323 (1999).

    PubMed  Google Scholar 

  21. Advani, T., Koek, W. & Hensler, J.G. Gender differences in the enhanced vulnerability of BDNF+/- mice to mild stress. Int. J. Neuropsychopharmacol. 12, 583–538 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Baumans, V. in UFAW Handbook on the Care and Management of Laboratory Animals 7th edn. (ed. Poole, T.B.) Vol. 1 300–301 (Wiley-Blackwell, Oxford, UK, 1999).

    Google Scholar 

  23. Giamberardino, M.A., Valente, R., de Bigontina, P. & Vecchiet, L. Artificial ureteral calculosis in rats: behavioural characterization of visceral pain episodes and their relationship with referred lumbar muscle hyperalgesia. Pain 61, 459–469 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Jacobsen, K.R., Kalliokoski, O., Teilmann, A.C., Hau, J. & Abelson, K.S. Postsurgical food and water consumption, fecal corticosterone metabolites, and behavior assessment as noninvasive measures of pain in vasectomized BALB/c mice. J. Am. Assoc. Lab. Anim. Sci. 51, 69–75 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Roughan, J.V. & Flecknell, P.A. Evaluation of a short duration behaviour-based post-operative pain scoring system in rats. Eur. J. Pain 7, 397–406 (2003).

    Article  PubMed  Google Scholar 

  26. Stasiak, K.L., Maul, D., French, E., Hellyer, P.W. & VandeWoude, S. Species-specific assessment of pain in laboratory animals. Contemp. Top. Lab. Anim. Sci. 42, 13–20 (2003).

    CAS  PubMed  Google Scholar 

  27. Wright-Williams, S.L., Courade, J.P., Richardson, C.A., Roughan, J.V. & Flecknell, P.A. Effects of vasectomy surgery and meloxicam treatment on faecal corticosterone levels and behaviour in two strains of laboratory mouse. Pain 130, 108–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Chelini, M.O., Souza, N.L., Cortopassi, S.R., Felippe, E.C. & Oliveira, C.A. Assessment of the physiologic stress response by quantification of fecal corticosteroids. J. Am. Assoc. Lab. Anim. Sci. 45, 8–11 (2006).

    CAS  PubMed  Google Scholar 

  29. Rakowski-Anderson, T. et al. Fecal corticosterone levels in RCAN1 mutant mice. Comp. Med. 62, 87–94 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Greaves, P. Histopathology of Preclinical Toxicology Studies 3rd edn. Ch. 12 (Elsevier, Waltham, MA, 2007).

    Google Scholar 

  31. Arras, M., Rettich, A., Cinelli, P., Kasermann, H.P. & Burki, K. Assessment of post-laparotomy pain in laboratory mice by telemetric recording of heart rate and heart rate variability. BMC Vet. Res. 3, 16 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Perissin, L., Facchin, P. & Porro, C.A. Diurnal variations in tonic pain reactions in mice. Life Sci. 67, 1477–1488 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Miller, A.L., Flecknell, P.A., Leach, M.C. & Roughan, J.V. A comparison of a manual and an automated behavioural analysis method for assessing post-operative pain in mice. Appl. Anim. Behav. Sci. 131, 138–144 (2011).

    Article  Google Scholar 

  34. Leach, M.C. et al. The assessment of post-vasectomy pain in mice using behaviour and the Mouse Grimace Scale. PloS One 7, e35656 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Clark, J.D., Rager, D.R. & Calpin, J.P. Animal well-being. III. An overview of assessment. Lab. Anim. Sci. 47, 580–585 (1997).

    CAS  PubMed  Google Scholar 

  36. Palme, R. Measuring fecal steroids: guidelines for practical application. Ann. N.Y. Acad. Sci. 1046, 75–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Chelini, M.O., Souza, N.L., Cortopassi, S.R., Felippe, E.C. & Oliveira, C.A. Assessment of the physiologic stress response by quantification of fecal corticosteroids. J. Am. Assoc. Lab. Anim. Sci. 45, 8–11 (2006).

    CAS  PubMed  Google Scholar 

  38. Moynihan, J., Koota, D., Brenner, G., Cohen, N. & Ader, R. Repeated intraperitoneal injections of saline attenuate the antibody response to a subsequent intraperitoneal injection of antigen. Brain Behav. Immun. 3, 90–96 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Ryabinin, A.E., Wang, Y.M. & Finn, D.A. Different levels of Fos immunoreactivity after repeated handling and injection stress in two inbred strains of mice. Pharmacol. Biochem. Behav. 63, 143–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. von der Ohe, C.G. & Servheen, C. Measuring stress in mammals using fecal glucocorticoids: opportunities and challenges. Wildl. Soc. Bull. 30, 1215–1225 (2002).

    Google Scholar 

  41. Hunt, C. & Hambly, C. Faecal corticosterone concentrations indicate that separately housed male mice are not more stressed than group housed males. Physiol. Behav. 87, 519–526 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Siswanto, H., Hau, J., Carlsson, H.E., Goldkuhl, R. & Abelson, K.S. Corticosterone concentrations in blood and excretion in faeces after ACTH administration in male Sprague-Dawley rats In Vivo. 22, 435–440 (2008).

  43. Eriksson, E., Royo, F., Lyberg, K., Carlsson, H.E. & Hau, J. Effect of metabolic cage housing on immunoglobulin A and corticosterone excretion in faeces and urine of young male rats. Exp. Physiol. 89, 427–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Volkman, A. & Gowans, J.L. The origin of macrophages from bone marrow in the rat. Br. J. Exp. Pathol. 46, 62–70 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gurfein, B.T. et al. The calm mouse: an animal model of stress reduction. Mol. Med. 18, 606–617 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tuli, J.S., Smith, J.A. & Morton, D.B. Corticosterone, adrenal and spleen weight in mice after tail bleeding, and its effect on nearby animals. Lab. Anim. 29, 90–95 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Van Loo, P.L. et al. Long-term effects of husbandry procedures on stress-related parameters in male mice of two strains. Lab. Anim. 38, 169–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Yin, D., Tuthill, D., Mufson, R.A. & Shi, Y. Chronic restraint stress promotes lymphocyte apoptosis by modulating CD95 expression. J. Exp. Med. 191, 1423–1428 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Biomarkers Core Laboratory at the Yerkes National Primate Research Center, which is supported by a Yerkes National Primate Research Center Base Grant, for providing assay services. We also thank Rebeccah Hunter, Cherie Lawley, Karen Lieber and Kristy Weed of the Division of Animal Resources at Emory University for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas K. Taylor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, J., Courtney, C., Superak, H. et al. Behavioral, clinical and pathological effects of multiple daily intraperitoneal injections on female mice. Lab Anim 43, 131–139 (2014). https://doi.org/10.1038/laban.433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing