Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Note
  • Published:

Short-term variability in biomarkers of bone metabolism in sheep

Abstract

Changes in bone remodeling during pathological states and during their treatment can be assessed noninvasively by measuring biomarkers of bone metabolism. Their application is limited, however, by the potential biological variability in the levels of these biomarkers over time. To determine the short-term variability in biomarkers of bone metabolism in adult sheep, the authors measured serum levels of alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BALP), osteocalcin (OC), N-terminal propeptide of type-III procollagen (PIIINP), deoxypyridinoline (DPD), tartrate-resistant acid phosphatase (TRAP), calcium and phosphorus intermittently over a 12-week period. There were significant differences in mean ALP activity and in phosphorus concentrations over time, but all other biomarkers showed no significant short-term variability. The results suggest that biomarkers of bone metabolism in sheep, especially the bone resorption marker DPD and the bone formation marker BALP, can be used reliably to detect changes in bone cellular activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Values of serum biomarkers of bone metabolism during the 12-week study period.

Similar content being viewed by others

References

  1. Delmas, P.D. et al. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos. Int. 11, S2–S17 (2000).

    Article  Google Scholar 

  2. Leeming, D.J. et al. The relative use of eight collagenous and noncollagenous markers for diagnosis of skeletal metastases in breast, prostate, or lung cancer patients. Cancer Epidemiol. Biomarkers Prev. 15, 32–38 (2006).

    Article  CAS  Google Scholar 

  3. Shankar, S. & Hosking, D.J. Biochemical assessment of Paget's disease of bone. J. Bone Miner. Res. 21, P22–P27 (2006).

    Article  CAS  Google Scholar 

  4. Leeming, D.J. et al. An update on biomarkers of bone turnover and their utility in biomedical research and clinical practice. Eur. J. Clin. Pharmacol. 62, 781–792 (2006).

    Article  CAS  Google Scholar 

  5. Seibel, M.J. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin. Biochem. Rev. 26, 97–122 (2005).

    PubMed  PubMed Central  Google Scholar 

  6. Seebeck, P. et al. Do serological tissue turnover markers represent callus formation during fracture healing? Bone 37, 669–677 (2005).

    Article  CAS  Google Scholar 

  7. Joerring, S., Jensen, L.T., Andersen, G.R. & Johansen, J.S. Types I and III procollagen extension peptides in serum respond to fracture in humans. Arch. Orthop. Trauma Surg. 111, 265–267 (1992).

    Article  CAS  Google Scholar 

  8. Lane, J.M., Suda, M., von der Mark, K. & Timpl, R. Immunofluorescent localization of structural collagen types in endochondral fracture repair. J. Orthop. Res. 4, 318–329 (1986).

    Article  CAS  Google Scholar 

  9. Pastoureau, P. et al. Effects of oophorectomy on biochemical and histological indices of bone turnover in ewes. J. Bone Miner. Res. 4, S237 (1989).

    Google Scholar 

  10. O'Connell, S.L. et al. Effects of prednisolone and deflazacort on osteocalcin metabolism in sheep. Calcif. Tissue Int. 53, 117–121 (1993).

    Article  CAS  Google Scholar 

  11. Newman, E., Turner, A.S. & Wark, J.D. The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone 16, 277S–284S (1995).

    Article  CAS  Google Scholar 

  12. Turner, A.S., Alvis, M., Myers, W. & Lundy, M.W. Changes in bone mineral density and bone-specific alkaline phosphatase in ovariectomized ewes. Bone 17, 395S–402S (1995).

    Article  CAS  Google Scholar 

  13. Chavassieux, P. et al. Effects of a new selective estrogen receptor modulator (MDL 103,323) on cancellous and cortical bone in ovariectomized ewes: a biochemical, histomorphometric, and densitometric study. J. Bone Miner. Res. 16, 89–96 (2001).

    Article  CAS  Google Scholar 

  14. Turner, A.S. The sheep as a model for osteoporosis in humans. Vet. J. 163, 232–239 (2002).

    Article  CAS  Google Scholar 

  15. Macleay, J.M., Olson, J.D. & Turner, A.S. Effect of dietary-induced metabolic acidosis and ovariectomy on bone mineral density and markers of bone turnover. J. Bone Miner. Metab. 22, 561–568 (2004).

    Article  CAS  Google Scholar 

  16. Newton, B.I., Cooper, R.C., Gilbert, J.A., Johnson, R.B. & Zardiackas, L.D. The ovariectomized sheep as a model for human bone loss. J. Comp. Pathol. 130, 323–326 (2004).

    Article  CAS  Google Scholar 

  17. Egermann, M., Goldhahn, J. & Schneider, E. Animal models for fracture treatment in osteoporosis. Osteoporos. Int. 16, S129–S138 (2005).

    Article  Google Scholar 

  18. Sigrist, I.M., Gerhardt, C., Alini, M., Schneider, E. & Egermann, M. The long-term effects of ovariectomy on bone metabolism in sheep. J. Bone Miner. Metab. 25, 28–35 (2007).

    Article  CAS  Google Scholar 

  19. Zarrinkalam, M.R., Beard, H., Schultz, C.G. & Moore, R.J. Validation of the sheep as a large animal model for the study of vertebral osteoporosis. Eur. Spine J. 18, 244–253 (2009).

    Article  CAS  Google Scholar 

  20. Egermann, M. et al. Pinealectomy affects bone mineral density and struture—an experimental study in sheep. BMC Musculoskelet. Disord. 12, 271 (2011).

    Article  Google Scholar 

  21. Egermann, M., Goldhahn, J., Holz, R., Schneider, E. & Lill, C.A. A sheep model for fracture treatment in osteoporosis: benefits of the model versus animal welfare. Lab. Anim. 42, 453–464 (2008).

    Article  CAS  Google Scholar 

  22. Ding, M., Cheng, L., Bollen, P., Schwarz, P. & Overgaard, S. Glucocorticoid induced osteopenia in cancellous bone of sheep: validation of large animal model for spine fusion and biomaterial research. Spine (Phila Pa 1976) 35, 363–370 (2010).

    Article  Google Scholar 

  23. Klein, P. et al. Are bone turnover markers capable of predicting callus consolidation during bone healing? Calcif. Tissue Int. 75, 40–49 (2004).

    Article  CAS  Google Scholar 

  24. Tralman, G. et al. A novel combined method of osteosynthesis in treatment of tibial fractures: a comparative study on sheep with application of rod-through-plate fixator and bone plating. Anat. Histol. Embryol. 42, 80–89 (2013).

    Article  CAS  Google Scholar 

  25. Liesegang, A., Sassi, M.L. & Risteli, J. Diurnal variation in concentrations of various markers of bone metabolism in growing female goats and sheep. Anim. Sci. 77, 197–203 (2003).

    CAS  Google Scholar 

  26. Arens, D. et al. Seasonal changes in bone metabolism in sheep. Vet. J. 174, 585–591 (2007).

    Article  CAS  Google Scholar 

  27. Association of Official Analytical Chemists. Official Methods of Analysis 14th edn. (Association of Official Analytical Chemists, Gaithersburg, MD, 1990).

  28. National Research Council. Nutrient Requirements of Sheep 6th edn. (National Academic Press, Washington, 1985).

  29. Allen, M.J. Biochemical markers of bone metabolism in animals: uses and limitations. Vet. Clin. Pathol. 32, 101–113 (2003).

    Article  CAS  Google Scholar 

  30. Liesegang, A. & Risteli, J. Influence of different calcium concentrations in the diet on bone metabolism in growing dairy goats and sheep. J. Anim. Physiol. Anim. Nutr. (Berl.) 89, 113–119 (2005).

    Article  CAS  Google Scholar 

  31. Dias, I.R. et al. Assessment of markers of bone formation under controlled environmental factors and their correlation with serum minerals in adult sheep as a model for orthopaedic research. Lab. Anim. 42, 465–472 (2008).

    Article  CAS  Google Scholar 

  32. Peacock, M. Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 5, S23–S30 (2010).

    Article  CAS  Google Scholar 

  33. Civitelli, R. & Ziambaras, K. Calcium and phosphate homeostasis: concerted interplay of new regulators. J. Endocrinol. Invest. 34, S3–S7 (2011).

    Article  Google Scholar 

  34. Aubin, J.E. in Principles of Bone Biology 3rd edn. (eds. Bilezikian, J.P., Raisz, L.G. & Martin, T.J.) 85–107 (Academic, San Diego, 2008).

    Book  Google Scholar 

  35. Blumsohn, A., Hannon, R.A., al-Dehaimi, A.W. & Eastell, R. Short-term intraindividual variability of markers of bone turnover in healthy adults. J. Bone Miner. Res. 9 (suppl. 1), S153 (1994).

    Google Scholar 

  36. Popp-Snijders, C., Lips, P. & Netelenbos, J.C. Intra-individual variation in bone resorption markers in urine. Ann. Clin. Biochem. 33, 347–348 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Rita Murta, Paulo Limão and Alexandra Silva from ARIUM Enterprise, Portugal, for their technical assistance in the biomarkers of bone metabolism determination analysis. We also acknowledge the Portuguese Foundation for Science and Technology for supporting the doctoral scholarship of C.P.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel R. Dias.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousa, C., de Azevedo, J., Reis, R. et al. Short-term variability in biomarkers of bone metabolism in sheep. Lab Anim 43, 21–26 (2014). https://doi.org/10.1038/laban.418

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.418

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing