Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Note
  • Published:

Evaluation of buprenorphine hydrochloride Pluronic® gel formulation in male C57BL/6NCrl mice

Abstract

Providing adequate analgesia while minimizing handling and stress post-surgery can be challenging. Recently, there have been commercial products made available for providing long acting analgesia in rodents. However, we find there are limitations for use in mice due to the viscosity of the product and the small dosing volumes needed. This project evaluated an in-house compounded formulation of buprenorphine easily made in the laboratory using pharmaceutical grade products. The release of buprenorphine was evaluated when compounded with two types of hydrogels (Pluronic® F-127 and F-68). Mice given buprenorphine in hydrogel (BP) demonstrated higher serum levels of buprenorphine for a longer period of time compared to mice given standard buprenorphine (Bup). However, the rate of decline in serum levels between the groups was similar; thus, it is more likely that the higher buprenorphine concentration seen in the BP group is due to the higher dose of buprenorphine given, rather than a slower release of product. Feed consumption was decreased in both groups one day after dosing; however, there was no difference in body weights. Increased activity in the open field was observed with both buprenorphine formulations, and lipemia was observed in mice given BP which persisted to at least 96 h. Based on our results, we conclude that this formulation did not sustain the release of buprenorphine or eliminate the increased activity commonly seen in mice given buprenorphine. In addition, the lipemia may confound research parameters, especially in cardiac studies and lipid metabolism studies. Therefore, we cannot recommend this formulation for use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transition temperatures from solid to gel.
Figure 2: Data on buprenorphine release from gel solutions.
Figure 3: Comparison of locomotor activity using Optomax Activity monitor program.
Figure 4: Daily wheel revolutions.
Figure 5: Average daily feed consumption baseline (BL) was average over 3 days before dosing.
Figure 6: Average daily body weights were measured 3 days before dosing for the baseline (BL) pretreatment data.

Similar content being viewed by others

References

  1. Tubbs, J.T. et al. Effects of buprenorphine, meloxicam, and flunixin meglumine as postoperative analgesia in mice. J. Am. Assoc. Lab. Anim. Sci. 50, 185–191 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cannon, C.Z., Kissling, G.E., Hoenerhoff, M.J., King-Herbert, A.P. & Blankenship-Paris, T. Evaluation of dosages and routes of administration of tramadol analgesia in rats using hot-plate and tail-flick tests. Lab Anim. (NY) 39, 342–351 (2010).

    Article  Google Scholar 

  3. Cannon, C.Z., Kissling, G.E., Goulding, D., King-Herbert, A.P. & Blankenship-Paris, T. Comparison of analgesia effects of tramadol, carprofen, or multimodal analgesia in rats undergoing ventral laparotomy. Lab Anim. (NY) 40, 85–93 (2011).

    Article  Google Scholar 

  4. Adamson, T.W. et al. Assessment of carprofen and buprenorphine on recovery of mice after surgical removal of the mammary fat pad. J. Am. Assoc. Lab. Anim. Sci. 49, 610–616 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Stokes, E.L., Flecknell, P.A. & Richardson, C.A. Reported analgesic and anaesthetic administration to rodents undergoing experimental surgical procedures. Lab. Anim. 43, 149–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Farris, H.E. Effects of indomethacin and buprenorphine analgesia on the postoperative recovery of mice. J. Am. Assoc. Lab. Anim. Sci. 47, 8 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Christoph, T. et al. Broad analgesic profile of buprenorphine in rodent models of acute and chronic pain. Eur. J. Pharmacol. 507, 87–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Kirsch, J.H., Klaus, J.A., Blizzard, K.K., Hurn, P.D. & Murphy, S.J. Pain evaluation and response to buprenorphine in rats subjected to sham middle cerebral artery occlusion. Contemp. Top. Lab. Anim. Sci. 41, 9–14 (2002).

    CAS  PubMed  Google Scholar 

  9. Martin, L.B.E., Thompson, A.C., Martin, T. & Kristal, M.B. Analgesic efficacy of orally administered buprenorphine in rats. Comp. Med. 51, 43–48 (2001).

    CAS  PubMed  Google Scholar 

  10. Flecknell, P.A. Post-operative analgesia in rabbits and rodents. Lab. Anim. 20, 34–37 (1991).

    Google Scholar 

  11. Goecke, J.C., Awad, H., Lawson, J.C. & Boivin, G.P. Evaluating postoperative analgesics in mice using telemetry. Comp. Med. 55, 37–44 (2005).

    CAS  PubMed  Google Scholar 

  12. Carbone, E.T., Lindstrom, K.E., Diep, S. & Carbone, L. Duration of action of sustained-release buprenorphine in 2 strains of mice. J. Am. Assoc. Lab. Anim. Sci. 51, 815–819 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yun, M.H. et al. Buprenorphine transdermal delivery system (BTDS): pharmacokinetic/pharmacodynamic modeling for analgesic effect in mice. Drug Metab. Rev. 38, 161 (2006).

    Google Scholar 

  14. Foley, P.L., Liang, H.X. & Crichlow, A.R. Evaluation of a sustained-release formulation of buprenorphine for analgesia in rats. J. Am. Assoc. Lab. Anim. Sci. 50, 198–204 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chum, H.H. et al. Antinociceptive effects of sustained-release buprenorphine in a model of incisional pain in rats (Rattus norvegicus). J. Am. Assoc. Lab. Anim. Sci. 53, 193–197 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kendall, L.V. et al. Efficacy of sustained-release buprenorphine in an experimental laparotomy model in female mice. J. Am. Assoc. Lab. Anim. Sci. 55, 66–73 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Seymour, T.L. et al. Postoperative analgesia due to sustained-release buprenorphine, sustained-release meloxicam, and carprofen gel in a model of incisional pain in rats (Rattus norvegicus). J. Am. Assoc. Lab. Anim. Sci. 55, 300–305 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Clark, T.S., Clark, D.D., Hoyt, J. & Robert, F. Pharmacokinetic comparison of sustained-release and standard buprenorphine in mice. J. Am. Assoc. Lab. Anim. Sci. 53, 387–391 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Escobar-Chavez, M.L.-C., Naik, A., Kalia, Y.N., Quintanar-Guerrero, D. & Ganem-Quintanar, A. Applications of thermo-reversible pluronic f-127 gels in pharmaceutical formulations. J. Pharm. Pharm. Sci. 9, 339–358 (2006).

    CAS  PubMed  Google Scholar 

  20. Wenzel, J.G. et al. Pluronic F127 gel formulations of deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle. J. Control. Release 85, 51–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Barichello, J.M., Morishita, M., Takayama, K. & Nagai, T. Absorption of insulin from pluronic f-127 gels following subcutaneous administration in rats. Int. J. Pharm. 184, 189–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Kabanov, A.V., Batrakova, E.V. & Alakhov, V.Y. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release 82, 189–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Nguyen, M.K. & Lee, D.S. Injectable biodegradable hydrogels. Macromol. Biosci. 10, 563–579 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Guarnieri, M., Tyler, B.K., DeTolla, L., Zhao, M. & B., K. Subcutaneous implants for long-acting drug therapy in laboratory animals may generate unintended drug reservoirs. J. Pharm. Bioallied. Sci. 6, 38–42 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Graves, R.A., Freeman, T. & Mandal, T.K. In vitro dissolution method for evaluation of buprenorphine in situ gel formulation: A technical note. AAPS PharmSciTech 8, 1 (2007).

    Article  Google Scholar 

  26. Goldkuhl, R., Jacobsen, K.R., Kalliokoski, O., Hau, J. & Abelson, K.S. Plasma concentrations of corticosterone and buprenorphine in rats subjected to jugular vein catheterization. Lab. Anim. 44, 337–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Kalliokoski, O., Jacobsen, K.R., Hau, J. & Abelson, K.S.P. Serum concentrations of buprenorphine after oral and parenteral administration in male mice. Vet. J. 187, 251–254 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Jirkof, P., Tourvieille, A., Cinelli, P. & Arras, M. Buprenorphine for pain relief in mice: repeated injections vs sustained-release depot formulation. Lab. Anim. 49, 177–187 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Guarnieri, M. et al. Safety and efficacy of buprenorphine for analgesia in laboratory mice and rats. Lab Anim. (NY) 41, 337–343 (2012).

    Article  Google Scholar 

  30. Neter, J., Kutner, M.H., Nachtscheim, C.J. & Waserman, W. Applied Linear Statical Models, 4th Edition. (WCB McGraw-Hill, 1996).

    Google Scholar 

  31. Tarasevich, B.J., Gutowska, A., Li, X.S. & Jeong, B.M. The effect of polymer composition on the gelation behavior of PLGA-g-PEG biodegradable thermoreversible gels. J. Biomed. Mater. Res. A 89, 248–254 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Hayes, K.E., Raucci, J.A., Gades, N.M. & Toth, L.A. An evaluation of analgesic regimens for abdominal surgery in mice. Contemp. Top. Lab. Anim. Sci. 39, 18–23 (2000).

    CAS  PubMed  Google Scholar 

  33. Leach, M.C., Forrester, A.R. & Flecknell, P.A. Influence of preferred foodstuffs on the antinociceptive effects of orally administered buprenorphine in laboratory rats. Lab. Anim. 44, 54–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Jacobsen, K.R., Kalliokoski, O., Hau, J. & Abelson, K.S.P. Voluntary ingestion of buprenorphine in mice. Anim. Welf. 20, 591–596 (2011).

    CAS  Google Scholar 

  35. Thompson, A.C. et al. Analgesic efficacy of orally administered buprenorphine in rats: methodologic considerations. Comp. Med. 54, 293–300 (2004).

    CAS  PubMed  Google Scholar 

  36. Speth, R.C., Smith, M.S. & Brogan, R.S. Regarding the inadvisability of administering postoperative analgesics in the drinking water of rats (Rattus norvegicus). Contemp. Top. Lab. Anim. Sci. 40, 15–17 (2001).

    CAS  PubMed  Google Scholar 

  37. van Loo, P.L. et al. Analgsics in mice used in cancer research: reduction of discomfort? Lab. Anim. 31, 318–325 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Gillingham, M.B., Clark, M.D., Dahly, E.M., Krueger-Higby, L.A. & Ney, D.M. A comparison of two opioid analgesics for relief of visceral pain induced by intestinal resection in rats. Contemp. Top. Lab. Anim. Sci. 40, 21–26 (2001).

    CAS  PubMed  Google Scholar 

  39. Liu, K.S. et al. Novel depots of buprenorphine prodrugs have a long-acting antinociceptive effect. Anesth. Analg. 102, 1445–1451 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Yun, M.H., Jeong, S.W., Pai, C.M. & Kim, S.O. Pharmacokinetic-pharmacodynamic modeling of the analgesic effect of bupredermTM, in mice. Health 2, 824–831 (2010).

    Article  Google Scholar 

  41. Taylor, B.F., Ramirez, H.E., Battles, A.H., Andrutis, K.A. & Neubert, J.K. Angalgesic (Rattus norvegicus). J. Am. Assoc. Lab. Anim. Sci. 55, 74–82 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Kendall, L.V. et al. Pharmacokinetics of sustained-release analgesics in mice. J. Am. Assoc. Lab. Anim. Sci. 53, 478–484 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wright-Williams, S.L., Courade, J.P., Richardson, C.A., Roughan, J.V. & Flecknell, P.A. Effects of vasectomy surgery and meloxicam treatment on faecal corticosterone levels and behaviour in two strains of laboratory mouse. Pain 130, 108–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Benedetti, M. et al. Plasma corticosterone levels in mouse models of pain. Eur. J. Pain 16, 803–815 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Shim, W.S. et al. pH- and temperature sensitive, injectable, biodegradable block copolymer hydrogels as carriers for paclitaxel. Int. J. Pharm. 331, 11–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Moore, T., Croy, S., Mallapragada, S. & Pandit, N. Experimental investigation and mathematical modeling of Pluronic F127 gel dissolution: drug release in stirred systems. J. Control. Release 67, 191–202 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Paavola, A., Kilpelainen, I., Yliruusi, J. & Rosenberg, P. Controlled release injectable liposomal gel of ibuprofen for epidural analgesia. Int. J. Pharm. 199, 85–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Park, I. et al. Buprederm, a new transdermal delivery system of buprenorphine: Pharmacokinetic, efficacy and skin irritancy studies. Pharm. Res. 25, 1052–1062 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Gopal, S., Tzeng, T. & Cowan, A. Characterization of the pharmacokinetics of buprenorphine and norbuprenorphine in rats after intravenous bolus administration of buprenorphine. Eur. J. Pharm. Sci. 15, 287–293 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Cirimele, V., Etienne, S., Villain, M., Ludes, B. & Kintz, P. Evaluation of the One-Step ELISA kit for the detection of buprenorphine in urine, blood, and hair specimens. Forensic Sci. Int. 143, 153–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Yassen, A., Olofsen, E., Dahan, A. & Danhof, M. Parmacokinetic-pharmacodynamic modeling of the antinociceptive effect of buprenorphine and fentanyl in rats: role of receptor equilibration kinetics. J. Pharmacol. Exp. Ther. 313, 1136–1149 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Wright-Williams, S., Flecknell, P.A. & Roughan, J.V. Comparative effects of vasectomy surgery and buprenorphine treatment on faecal corticosterone concentrations and behaviour assessed by manual and automated analysis methods in C57 and C3H mice. PLoS ONE 8, e75948 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Clark, M.D. et al. Evaluation of liposome-encapsulated oxymorphone hydrochloride in mice after splenectomy. Comp. Med. 54, 558–563 (2004).

    CAS  PubMed  Google Scholar 

  54. Jacobsen, K.R., Kalliokoski, O., Teilmann, A.C., Hau, J. & Abelson, K.S.P. Postsurgical food and water consumption, fecal corticosterone metabolites, and behavior assessment as noninvasive measures of pain in vasectomized BALB/c mice. J. Am. Assoc. Lab. Anim. Sci. 51, 69–75 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chappell, M.G., Koeller, C.A. & Hall, S.I. Differences in postsurgical recovery of cf1 mice after intraperitoneal implantation of radiotelemetry devices through a mid line or flank surgical approach. J. Am. Assoc. Lab. Anim. Sci. 50, 227–237 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bourque, S.L., Adams, M.A., Nakatsu, K. & Winterborn, A. Comparison of buprenorphine and meloxicam for postsurgical analgesia in rats: effects on body weight, locomotor activity, and hemodynamic parameters. J. Am. Assoc. Lab. Anim. Sci. 49, 617–622 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Blaha, M.D. & Leon, L.R. Effects of indomethacin and buprenorphine analgesia on the post operative recovery of mice. J. Am. Assoc. Lab. Anim. Sci. 47, 8–19 (2008).

    PubMed  PubMed Central  Google Scholar 

  58. Sundbom, R., Jacobsen, K.R., Kalliokoski, O., Hau, J. & Abelson, K.S.P. Post-operative corticosterone levels in plasma and feces of mice subjected to permanent catheterization and automated blood sampling. In Vivo 25, 335–342 (2011).

    PubMed  Google Scholar 

  59. Brennan, M.P., Sinusas, A.J., Horvath, T.L., Collins, J.G. & Harding, M.J. Correlation between body weight changes and postoperative pain in rats with with meloxicam or buprenorphine. Lab Anim. (NY) 38, 87–93 (2009).

    Article  Google Scholar 

  60. Turner, P.V., Brabb, T., Pekow, C. & Vasbinder, M.A. Administration of substances to laboratory animals: routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci. 50, 600–613 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cohier, C., Chevillard, L., Risede, P., Roussel, O. & Megarbane, B. Respiratory effects of buprenorphine/naloxone alone and in combination with diazepam in naive and tolerant rats. Toxicol. Lett. 228, 75–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Palmer, W.K., Emeson, E.E. & Johnston, T.P. Poloxamer 407-induced atherogenesis in the C57BL/6 mouse. Atherosclerosis 136, 115–123 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Blonder, J.M., Baird, L., Fulfs, J.C. & Rosenthal, G.J. Dose-dependent hyperlipidemia in rabbits following administration of poloxamer 407 Gel. Pharmacology Letters 65, 261–266 (1999).

    Google Scholar 

  64. Johnston, T.P., Nguyen, L.B., Chu, W.A. & Shefer, S. Potency of select statin drugs in a new mouse model of hyperlipidemia and atherosclerosis. Int. J. Pharm. 229, 75–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Wout, Z.G.M. et al. Poloxamer 407-mediated changes in plasma cholersterol and triglycerides following intraperitoneal injection in rats. PDA J. Pharm. Sci. Technol. 46, 192 (1992).

    CAS  Google Scholar 

  66. Hamad, I., Hunter, A.C. & Moghimi, S.M. Complement monitoring of pluronc 127 gel and micelles: suppression of copolymer-mediated complement activation by elevated serum levels of HDL, LDL, and apolipoproteins AI and B-100. J. Control. Release 170, 167–174 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the National Institutes of Health and the National Institute of Environmental Health Sciences. This article may be the work product of an employee or group of employees of the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), however, the statements, opinions or conclusions contained herein do not necessarily represent the statements, opinions or conclusions of NIEHS, NIH or the United States government.

Author information

Authors and Affiliations

Authors

Contributions

T.L.B.-P. conceived of the project. T.L.B.-P., D.R.G., P.H.M. and J.W.D. designed the experiments. T.L.B.-P., D.R.G., P.H.M. and C.A.M. conducted the experiments. D.R.G. and G.E.K. analyzed the data. T.L.B.-P., D.R.G., P.H.M., and J.W.D. prepared the manuscript. T.L.B.-P. supervised the project.

Corresponding author

Correspondence to Terry L. Blankenship-Paris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blankenship-Paris, T., Dutton, J., Goulding, D. et al. Evaluation of buprenorphine hydrochloride Pluronic® gel formulation in male C57BL/6NCrl mice. Lab Anim 45, 370–379 (2016). https://doi.org/10.1038/laban.1106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.1106

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing