Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

The role of near-infrared spectroscopy monitoring in preterm infants

Abstract

Neurological morbidities such as peri/intraventricular hemorrhage and periventricular leukomalacia largely determine the neurodevelopmental outcome of vulnerable preterm infants and our aim should be to minimize their occurrence or severity. Bed-side neuromonitoring could provide valuable pieces of information about possible hemodynamic disturbances that are significantly associated with neurological morbidities and increased mortality. Near-infrared spectroscopy offers evaluation of regional cerebral oxygenation, which in conjunction with other non-invasive methods may give us a more complete picture about end-organ perfusion. This monitoring tool could help us fully understand the pathophysiology of severe neurological morbidities and guide our management in order to reduce their incidence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Liem KD, Greisen G . Monitoring of cerebral haemodynamics in newborn infants. Early Hum Dev 2010; 86: 155–158.

    Article  Google Scholar 

  2. Baik N, Urlesberger B, Schwaberger B, Schmölzer GM, Avian A, Pichler G . Cerebral haemorrhage in preterm neonates: does cerebral regional oxygen saturation during the immediate transition matter? Arch Dis Child Fetal Neonatal Ed 2015; 100: 422–427.

    Article  Google Scholar 

  3. Balegar KK, Stark MJ, Briggs N, Andersen CC . Early cerebral oxygen extraction and the risk of death or sonographic brain injury in very preterm infants. J Pediatr 2014; 164: 475–480.

    Article  Google Scholar 

  4. Noori S, McCoy M, Anderson MP, Ramji F, Seri I . Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J Pediatr 2014; 164: 264–270.

    Article  Google Scholar 

  5. Alderliesten T, Lemmers PM, Smarius JJ, van de Vosse RE, Baerts W, van Bel F . Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J Pediatr 2013; 162: 698–704.

    Article  Google Scholar 

  6. Cerbo RM, Scudeller L, Maragliano R, Cabano R, Pozzi M, Tinelli C et al. Cerebral oxygenation, superior vena cava flow, severe intraventricular hemorrhage and mortality in 60 very low birth weight infants. Neonatology 2015; 108: 246–252.

    Article  Google Scholar 

  7. Mukerji A, Shah V, Shah PS . Periventricular/intraventricular hemorrhage and neurodevelopmental outcomes: a meta-analysis. Pediatrics 2015; 136: 1132–1143.

    Article  Google Scholar 

  8. Greisen G, Andresen B, Plomgaard AM, Hyttel-Sørensen S . Cerebral oximetry in preterm infants: an agenda for research with a clear clinical goal. Neurophotonics 2016; 3: 031407.

    Article  Google Scholar 

  9. Noori S, Seri I . Hemodynamic antecedents of peri/intraventricular hemorrhage in very preterm neonates. Semin Fetal Neonatal Med 2015; 20: 232–237.

    Article  Google Scholar 

  10. Kenosi M, Naulaers G, Ryan CA, Dempsey EM . Current research suggests that the future looks brighter for cerebral oxygenation monitoring in preterm infants. Acta Paediatr 2015; 104: 225–231.

    Article  CAS  Google Scholar 

  11. Sood BG, McLaughlin K, Cortez J . Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med 2015; 20: 164–172.

    Article  Google Scholar 

  12. da Costa CS, Greisen G, Austin T . Is near-infrared spectroscopy clinically useful in the preterm infant? Arch Dis Child Fetal Neonatal Ed 2015; 100: 558–561.

    Article  Google Scholar 

  13. El-Khuffash A, Herbozo C, Jain A, Lapointe A, McNamara PJ . Targeted neonatal echocardiography (TnECHO) service in a Canadian neonatal intensive care unit: a 4-year experience. J Perinatol 2013; 33: 687–690.

    Article  CAS  Google Scholar 

  14. Jöbsis FF . Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977; 198: 1264–1267.

    Article  Google Scholar 

  15. Brazy JE, Lewis DV . Changes in cerebral blood volume and cytochrome aa3 during hypertensive peaks in preterm infants. J Pediatr 1986; 108: 983–987.

    Article  CAS  Google Scholar 

  16. Binder-Heschl C, Urlesberger B, Koestenberger M, Schwaberger B, Schmölzer GM, Pichler G . Cerebral tissue oxygen saturation is associated with N-terminal probrain natriuretic peptide in preterm infants on their first day of life. Acta Paediatr 2015; 104: 32–37.

    Article  CAS  Google Scholar 

  17. Cohen E, Baerts W, Alderliesten T, Derks J, Lemmers P, van Bel F . Growth restriction and gender influence cerebral oxygenation in preterm neonates. Arch Dis Child Fetal Neonatal Ed 2016; 101: 156–161.

    Article  Google Scholar 

  18. Verhagen EA, Hummel LA, Bos AF, Kooi EM . Near-infrared spectroscopy to detect absence of cerebrovascular autoregulation in preterm infants. Clin Neurophysiol 2014; 125: 147–152.

    Article  Google Scholar 

  19. Binder-Heschl C, Urlesberger B, Schwaberger B, Koestenberger M, Pichler G . Borderline hypotension: how does it influence cerebral regional tissue oxygenation in preterm infants? J Matern Fetal Neonatal Med 2016; 29: 2341–2346.

    CAS  PubMed  Google Scholar 

  20. Baik N, Urlesberger B, Schwaberger B, Schmölzer GM, Mileder L, Avian A et al. Reference ranges for cerebral tissue oxygen saturation index in term neonates during immediate neonatal transition after birth. Neonatology 2015; 108: 283–286.

    Article  Google Scholar 

  21. Pichler G, Binder C, Avian A, Beckenbach E, Schmölzer GM, Urlesberger B . Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth. J Pediatr 2013; 163: 1558–1563.

    Article  Google Scholar 

  22. Fuchs H, Lindner W, Buschko A, Almazam M, Hummler HD, Schmid MB . Brain oxygenation monitoring during neonatal resuscitation of very low birth weight infants. J Perinatol 2012; 32: 356–362.

    Article  CAS  Google Scholar 

  23. Alderliesten T, Dix L, Baerts W, Caicedo A, van Huffel S, Naulaers G et al. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr Res 2016; 79: 55–64.

    Article  CAS  Google Scholar 

  24. Shah AR, Kurth CD, Gwiazdowski SG, Chance B, Delivoria-Papadopoulos M . Fluctuations in cerebral oxygenation and blood volume during endotracheal suctioning in premature infants. J Pediatr 1992; 120: 769–774.

    Article  CAS  Google Scholar 

  25. Mosca FA, Colnaghi M, Lattanzio M, Bray M, Pugliese S, Fumagalli M . Closed versus open endotracheal suctioning in preterm infants: effects on cerebral oxygenation and blood volume. Biol Neonate 1997; 72: 9–14.

    Article  CAS  Google Scholar 

  26. Dani C, Bertini G, Reali MF, Tronchin M, Wiechmann L, Martelli E et al. Brain hemodynamic changes in preterm infants after maintenance dose caffeine and aminophylline treatment. Biol Neonate 2000; 78: 27–32.

    Article  CAS  Google Scholar 

  27. Tracy MB, Klimek J, Hinder M, Ponnampalam G, Tracy SK . Does caffeine impair cerebral oxygenation and blood flow velocity in preterm infants? Acta Paediatr 2010; 99: 1319–1323.

    Article  CAS  Google Scholar 

  28. Waitz M, Schmid MB, Fuchs H, Mendler MR, Dreyhaupt J, Hummler HD . Effects of automated adjustment of the inspired oxygen on fluctuations of arterial and regional cerebral tissue oxygenation in preterm infants with frequent desaturations. J Pediatr 2015; 166: 240–244.

    Article  Google Scholar 

  29. Schmid MB, Hopfner RJ, Lenhof S, Hummler HD, Fuchs H . Cerebral oxygenation during intermittent hypoxemia and bradycardia in preterm infants. Neonatology 2015; 107: 137–146.

    Article  CAS  Google Scholar 

  30. Naulaers G, Delanghe G, Allegaert K, Debeer A, Cossey V, Vanhole C et al. Ibuprofen and cerebral oxygenation and circulation. Arch Dis Child Fetal Neonatal Ed 2005; 90: 75–76.

    Article  Google Scholar 

  31. Polglase GR, Miller SL, Barton SK, Baburamani AA, Wong FY, Aridas JD et al. Initiation of resuscitation with high tidal volumes causes cerebral hemodynamic disturbance, brain inflammation and injury in preterm lambs. PLoS ONE 2012; 7: e39535.

    Article  CAS  Google Scholar 

  32. Mintzer JP, Parvez B, La Gamma EF . Umbilical arterial blood sampling alters cerebral tissue oxygenation in very low birth weight neonates. J Pediatr 2015; 167: 1013–1017.

    Article  Google Scholar 

  33. Pichler G, Urlesberger B, Baik N, Schwaberger B, Binder-Heschl C, Avian A et al. Cerebral oxygen saturation to guide oxygen delivery in preterm neonates for the immediate transition after birth: a 2-center randomized controlled pilot feasibility trial. J Pediatr 2016; 170: 73–78.

    Article  Google Scholar 

  34. Plomgaard AM, van Oeveren W, Petersen TH, Alderliesten T, Austin T, van Bel F et al. The SafeBoosC II randomized trial: treatment guided by near-infrared spectroscopy reduces cerebral hypoxia without changing early biomarkers of brain injury. Pediatr Res 2016; 79: 528–535.

    Article  CAS  Google Scholar 

  35. Dempsey EM, Barrington KJ, Marlow N, O'Donnell CP, Miletin J, Naulaers G et al. Management of hypotension in preterm infants (The HIP Trial): a randomised controlled trial of hypotension management in extremely low gestational age newborns. Neonatology 2014; 105: 275–281.

    Article  CAS  Google Scholar 

  36. Verhagen EA, Van Braeckel KN, van der Veere CN, Groen H, Dijk PH, Hulzebos CV et al. Cerebral oxygenation is associated with neurodevelopmental outcome of preterm children at age 2 to 3 years. Dev Med Child Neurol 2015; 57: 449–455.

    Article  Google Scholar 

  37. da Costa CS, Czosnyka M, Smielewski P, Mitra S, Stevenson GN, Austin T . Monitoring of cerebrovascular reactivity for determination of optimal blood pressure in preterm infants. J Pediatr 2015; 167: 86–91.

    Article  Google Scholar 

  38. Tyszczuk L, Meek J, Elwell C, Wyatt JS . Cerebral blood flow is independent of mean arterial blood pressure in preterm infants undergoing intensive care. Pediatrics 1998; 102: 337–341.

    Article  CAS  Google Scholar 

  39. Alderliesten T, Lemmers PM, van Haastert IC, de Vries LS, Bonestroo HJ, Baerts W et al. Hypotension in preterm neonates: low blood pressure alone does not affect neurodevelopmental outcome. J Pediatr 2014; 164: 986–991.

    Article  Google Scholar 

  40. Okumura A, Hayakawa F, Kato T, Itomi K, Maruyama K, Ishihara N et al. Hypocarbia in preterm infants with periventricular leukomalacia: the relation between hypocarbia and mechanical ventilation. Pediatrics 2001; 107: 469–475.

    Article  CAS  Google Scholar 

  41. Verhagen EA, Ter Horst HJ, Keating P, Martijn A, Van Braeckel KN, Bos AF . Cerebral oxygenation in preterm infants with germinal matrix-intraventricular hemorrhages. Stroke 2010; 41: 2901–2907.

    Article  CAS  Google Scholar 

  42. Stark MJ, Hodyl NA, Belegar VKK, Andersen CC . Intrauterine inflammation, cerebral oxygen consumption and susceptibility to early brain injury in very preterm newborns. Arch Dis Child Fetal Neonatal Ed 2016; 101: 137–142.

    Article  Google Scholar 

  43. Katheria A, Rich W, Finer N . Optimizing care of the preterm infant starting in the delivery room. Am J Perinatol 2016; 33: 297–304.

    Article  Google Scholar 

  44. Backes CH, Rivera BK, Haque U, Bridge JA, Smith CV, Hutchon DJ et al. Placental transfusion strategies in very preterm neonates: a systematic review and meta-analysis. Obstet Gynecol 2014; 124: 47–56.

    Article  Google Scholar 

  45. Pichler G, Baik N, Urlesberger B, Cheung PY, Aziz K, Avian A et al. Cord clamping time in spontaneously breathing preterm neonates in the first minutes after birth: impact on cerebral oxygenation - a prospective observational study. J Matern Fetal Neonatal Med 2016; 29: 1570–1572.

    Article  CAS  Google Scholar 

  46. Sirc J, Dempsey EM, Miletin J . Diastolic ventricular function improves during the first 48-hours-of-life in infants weighting <1250g. Acta Paediatr 2015; 104: 1–6.

    Article  Google Scholar 

  47. Paradisis M, Evans N, Kluckow M, Osborn D . Randomized trial of milrinone versus placebo for prevention of low systemic blood flow in very preterm infants. J Pediatr 2009; 154: 189–195.

    Article  CAS  Google Scholar 

  48. El-Khuffash A, Weisz DE, McNamara PJ . Reflections of the changes in patent ductus arteriosus management during the last 10 years. Arch Dis Child Fetal Neonatal Ed 2016; 101: 474–478.

    Article  Google Scholar 

  49. Dix L, Molenschot M, Breur J, de Vries W, Vijlbrief D, Groenendaal F et al. Cerebral oxygenation and echocardiographic parameters in preterm neonates with a patent ductus arteriosus: an observational study. Arch Dis Child Fetal Neonatal Ed 2016 (e-pub ahead of print; doi:10.1136/archdischild-2015-309192).

    Article  Google Scholar 

  50. van der Laan ME, Roofthooft MT, Fries MW, Berger RM, Schat TE, van Zoonen AG et al. A hemodynamically significant patent ductus arteriosus does not affect cerebral or renal tissue oxygenation in preterm infants. Neonatology 2016; 110: 141–147.

    Article  CAS  Google Scholar 

  51. Lemmers PM, Toet MC, van Bel F . Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants. Pediatrics 2008; 121: 142–147.

    Article  Google Scholar 

  52. Eriksen VR, Hahn GH, Greisen G . Dopamine therapy is associated with impaired cerebral autoregulation in preterm infants. Acta Paediatr 2014; 103: 1221–1226.

    Article  CAS  Google Scholar 

  53. Kooi EM, van der Laan ME, Verhagen EA, Van Braeckel KN, Bos AF . Volume expansion does not alter cerebral tissue oxygen extraction in preterm infants with clinical signs of poor perfusion. Neonatology 2013; 103: 308–314.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by EU FP7/2007–2013 under grant agreement no. 260777 (The HIP Trial).

Author contributions

PK, ZS and JS: substantial contributions to design, acquisition, analysis, and interpretation of the data. GN: drafted and reviewed the article for important intellectual content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Straňák.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korček, P., Straňák, Z., Širc, J. et al. The role of near-infrared spectroscopy monitoring in preterm infants. J Perinatol 37, 1070–1077 (2017). https://doi.org/10.1038/jp.2017.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2017.60

This article is cited by

Search

Quick links