Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

How to assess hemodynamic status in very preterm newborns in the first week of life?

Abstract

Background:

Assessing hemodynamic status in preterm newborns is an essential task, as many studies have shown increased morbidity when hemodynamic parameters are abnormal. Although oscillometric monitoring of arterial blood pressure (BP) is widely used due to its simplicity and lack of side effects, these values are not always correlated with microcirculation and oxygen delivery.

Objectives:

This review focuses on different tools for the assessment of hemodynamic status in preterm newborns. These include the measurement of clinical (BP, capillary refill time and urinary output (UO)) or biological parameters (lactate analysis), functional echocardiography, and near-infrared spectroscopy (NIRS). We describe the concepts and techniques involved in these tools in detail, and examine the interest and limitations of each type of assessment.

Conclusions:

This review highlights the complementarities between the different parameters used to assess hemodynamic status in preterm newborns during the first week of life. The analysis of arterial BP measured by oscillometric monitoring must take into account other clinical data, in particular capillary refill time and UO, and biological data such as lactate levels. Echocardiography improves noninvasive hemodynamic management in newborns but requires specific training. In contrast, NIRS may be useful in monitoring the clinical course of infants at risk of, or presenting with, hypotension. It holds the potential for early and noninvasive identification of silent hypoperfusion in critically ill preterm infants. However, more data are needed to confirm the usefulness of this promising tool in significantly changing the outcome of these infants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. de Boode WP . Clinical monitoring of systemic hemodynamics in critically ill newborns. Early Hum Dev 2010; 86 (3): 137–141.

    Article  PubMed  Google Scholar 

  2. Dempsey EM, Barrington KJ . Treating hypotension in the preterm infant: when and with what: a critical and systematic review. J Perinatol 2007; 27 (8): 469–478.

    Article  CAS  PubMed  Google Scholar 

  3. Abman SH . Recent advances in the pathogenesis and treatment of persistent pulmonary hypertension of the newborn. Neonatology 2007; 91 (4): 283–290.

    Article  CAS  PubMed  Google Scholar 

  4. Lakkundi A, Wright I, de Waal K . Transitional hemodynamics in preterm infants with a respiratory management strategy directed at avoidance of mechanical ventilation. Early Human Dev 2014; 90 (8): 409–412.

    Article  Google Scholar 

  5. Kluckow M, Evans N . Relationship between blood pressure and cardiac output in preterm infants requiring mechanical ventilation. J Pediatr 1996; 129 (4): 506–512.

    Article  CAS  PubMed  Google Scholar 

  6. Miall Allen VM, de Vries LS, Dubowitz LM, Whitelaw AG . Blood pressure fluctuation and intraventricular hemorrhage in the preterm infant of less than 31 week’s gestation. Pediatrics 1989; 83 (5): 657–661.

    CAS  PubMed  Google Scholar 

  7. Shahid S, Dutta S, Symington A, Shivananda S, McMaster University NICU. Standardizing umbilical catheter usage in preterm infants. Pediatrics 2014; 133 (6): e1742–e1752.

    Article  PubMed  Google Scholar 

  8. Weindling AM . ‘Blood pressure monitoring in the newborn’. Arch Dis Child 1989; 64: 444–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kimble KJ, Darnall RA Jr, Yelderman M, Ariagno RL, Ream AK . An automated oscillometric technique for estimating mean arterial pressure in critically ill newborns. Anesthesiology 1981; 54 (5): 423–425.

    Article  CAS  PubMed  Google Scholar 

  10. Colan SD, Fujii A, Borow KM, MacPherson D, Sanders SP . Noninvasive determination of systolic, diastolic and end-systolic blood pressure in neonates, infants and young children: comparison with central aortic pressure measurements. Am J Cardiol 1983; 52 (7): 867–870.

    Article  CAS  PubMed  Google Scholar 

  11. Diprose GK, Evans DH, Archer LN, Levene MI . Dinamap fails to detect hypotension in very low birthweight infants. Arch Dis Child 1986; 61 (8): 771–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fanaroff JM, Fanaroff AA . Blood pressure disorders in the neonate: hypotension and hypertension. Semin Fetal Neonatal Med 2006; 11 (3): 174–181.

    Article  PubMed  Google Scholar 

  13. Development of audit measures and guidelines for good practice in the management of neonatal respiratory distress syndrome. Report of a Joint Working Group of the British Association of Perinatal Medicine and the Research Unit of the Royal College of Physicians. Arch Dis Child 1992; 67 (10 Spec No):1221–1227.

  14. Goldberg RN, Chung D, Goldman SL, Bancalari E . The association of rapid volume expansion and intraventricular hemorrhage in the preterm infant. J Pediatr 1980; 96 (6): 1060–1063.

    Article  CAS  PubMed  Google Scholar 

  15. Batton B, Batton D, Riggs T . Blood pressure during the first 7 days in premature infants born at postmenstrual age 23 to 25 weeks. Am J Perinatol 2007; 24 (2): 107–115.

    Article  PubMed  Google Scholar 

  16. Kuint J, Barak M, Morag I, Maayan-Metzger A . Early treated hypotension and outcome in very low birth weight infants. Neonatology 2009; 95 (4): 311–316.

    Article  PubMed  Google Scholar 

  17. St Peter D, Gandy C, Hoffman SC . Hypotension and adverse outcomes in prematurity: comparing definitions. Neonatology 2016; 111 (3): 228–233.

    Article  PubMed  Google Scholar 

  18. Faust K, Härtel C, Preuß M, Rabe H, Roll C, Emeis M et al. Short-term of very-low-birthweight infants with arterial hypotension in the first 24 h of life. Arch Dis Child Fetal Neonatal Ed 2015; 100 (5): F388–F392.

    Article  PubMed  Google Scholar 

  19. Stranak Z, Semberova J, Barrington K, O'Donnell C, Marlow N, Naulaers G et al. HIP consortium. International survey on diagnosis and management of hypotension in extremely preterm babies. Eur J Pediatr 2014; 173 (6): 793–798.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gale C . Question 2Is capillary refill time a useful marker of haemodynamic status in neonates? Arch Dis Child 2010; 95 (5): 395–397.

    Article  PubMed  Google Scholar 

  21. Wodey E, Pladys P, Bétrémieux P, Kerebel C, Ecoffey C . Capillary refilling time and hemodynamics in neonates: a Doppler echocardiographic evaluation. Crit Care Med 1998; 26 (8): 1437–1440.

    Article  CAS  PubMed  Google Scholar 

  22. Osborn DA, Evans N, Kluckow M . Clinical detection of low upper body blood flow in very premature infants using blood pressure, capillary refill time, and central-peripheral temperature difference. Arch Dis Child Fetal Neonatal Ed 2004; 89 (2): F168–F173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hernandez G, Luengo C, Bruhn A, Kattan E, Friedman G, Ospina-Tascon GA et al. When to stop septic shock resuscitation: clues from a dynamic perfusion monitoring. Ann Intensive Care 2014; 4: 30.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hernandez G, Pedreros C, Veas E, Bruhn A, Romero C, Rovegno M et al. Evolution of peripheral vs metabolic perfusion parameters during septic shock resuscitation. A clinical-physiologic study. J Crit Care 2012; 27 (3): 283–288.

    Article  PubMed  Google Scholar 

  25. Dempsey EM, Barrington KJ, Marlow N, O'Donnell CP, Miletin J, Naulaers G et al. Management of hypotension in preterm infants (The HIP Trial): a randomised controlled trial of hypotension management in extremely low gestational age newborns. Neonatology 2014; 105 (4): 275–281.

    Article  CAS  PubMed  Google Scholar 

  26. Seri I . Circulatory support of the sick preterm infant. Semin Neonatol 2001; 6: 85–95.

    Article  CAS  PubMed  Google Scholar 

  27. Cooke RJ, Werkman S, Watson D . Urine output measurement in premature infants. Pediatrics 1989; 83: 116–118.

    CAS  PubMed  Google Scholar 

  28. Bellomo R . Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8: R204–R212.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL . Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 2007; 71: 1028–1035.

    Article  CAS  PubMed  Google Scholar 

  30. Jetton JG, Askenazi DJ . Update on acute kidney injury in the neonate. Curr Opin Pediatr 2012; 24: 191–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bezerra CT, Vaz Cunha LC, Liborio AB . Defining reduced urine output in neonatal ICU: importance for mortality and acute kidney injury classification. Nephrol Dial Transplant 2013; 28: 901–909.

    Article  PubMed  CAS  Google Scholar 

  32. Lorenz JM, Kleinman LI, Ahmed G, Markarian K . Phases of fluid and electrolyte homeostasis in the extremely low birth weight infant. Pediatrics 1995; 96: 484–489.

    CAS  PubMed  Google Scholar 

  33. Kluckow M, Evans N . Low systemic blood flow and hyperkalemia in preterm infants. J Pediatr 2001; 139: 227–232.

    Article  CAS  PubMed  Google Scholar 

  34. Dasgupta SJ, Gill AB . Hypotension in the very low birthweight infant: the old, the new, and the uncertain. Arch Dis Child Fetal Neonatal Ed 2003; 88 (6): F450–F454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stranak Z, Semberova J, Barrington K, O'Donnell C, Marlow N, Naulaers G et al. International survey on diagnosis and management of hypotension in extremely preterm babies. Eur J Pediatr 2014; 173 (6): 793–798.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Izraeli S, Ben-Sira L, Harell D, Naor N, Ballin A, Davidson S . Lactic acid as a predictor for erythrocyte transfusion in healthy preterm infants with anemia of prematurity. J Pediatr 1993; 122 (4): 629–631.

    Article  CAS  PubMed  Google Scholar 

  37. Fitzgerald MJ, Goto M, Myers TF, Zeller WP . Early metabolic effects of sepsis in the preterm infant: lactic acidosis and increased glucose requirement. J Pediatr 1992; 121 (6): 951–955.

    Article  CAS  PubMed  Google Scholar 

  38. Abubacker M, Yoxall CW, Lamont G . Peri-operative blood lactate concentrations in pre-term babies with necrotising enterocolitis. Eur J Pediatr Surg 2003; 13 (1): 35–39.

    Article  CAS  PubMed  Google Scholar 

  39. Deshpande SA, Platt MP . Association between blood lactate and acid-base status and mortality in ventilated babies. Arch Dis Child Fetal Neonatal Ed 1997; 76 (1): F15–F20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Groenendaal F, Lindemans C, Uiterwaal CS, de Vries LS . Early arterial lactate and prediction of outcome in preterm neonates admitted to a neonatal intensive care unit. Biol Neonate 2003; 83 (3): 171–176.

    Article  CAS  PubMed  Google Scholar 

  41. Wardle SP, Yoxall CW, Weindling AM . Peripheral oxygenation in hypotensive preterm babies. Pediatr Res 1999; 45 (3): 343–349.

    Article  CAS  PubMed  Google Scholar 

  42. Watkins AM, West CR, Cooke RW . Blood pressure and cerebral haemorrhage and ischaemia in very low birthweight infants. Early Hum Dev 1989; 19 (2): 103–110.

    Article  CAS  PubMed  Google Scholar 

  43. Miletin J, Pichova K, Dempsey EM . Bedside detection of low systemic flow in the very low birth weight infant on day 1 of life. Eur J Pediatr 2009; 168 (7): 809–813.

    Article  CAS  PubMed  Google Scholar 

  44. Burton BK . Inborn errors of metabolism in infancy: a guide to diagnosis. Pediatrics 1998; 102 (6): E69.

    Article  CAS  PubMed  Google Scholar 

  45. Sehgal A, McNamara PJ . Does point-of-care functional echocardiography enhance cardiovascular care in the NICU? J Perinatol 2008; 28 (11): 729–735.

    Article  CAS  PubMed  Google Scholar 

  46. Moss S, Kitchiner DJ, Yoxall CW, Subhedar NV . Evaluation of echocardiography on the neonatal unit. Arch Dis Child Fetal Neonatal Ed 2003; 88 (4): F287–F289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Boode WP, Singh Y, Gupta S, Austin T, Bohlin K, Dempsey E et al. Recommendations for neonatologist performed echocardiography in Europe: consensus statement endorsed by European Society for Paediatric Research (ESPR) and European Society for Neonatology (ESN). Pediatr Res 2016; 80 (4): 465–471.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Evans N, Kluckow M . Early determinants of right and left ventricular output in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed 1996; 74 (2): F88–F94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Skinner JR, Alverson D, Hunter S. Echocardiography for the Neonatologist, Churchill Livingstone, Michigan, 2000..

  50. Kluckow M, Evans N . Superior vena cava flow in newborn infants: a novel marker of systemic blood flow. Arch Dis Child Fetal Neonatal Ed 2000; 82 (3): F182–F187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dempsey EM, Barrington KJ, Marlow N, O'Donnell CP, Miletin J, Naulaers G et al. HIP Consortium. Management of hypotension in preterm infants (The HIP Trial): a randomised controlled trial of hypotension management in extremely low gestational age newborns. Neonatology 2014; 105 (4): 275–281.

    Article  CAS  PubMed  Google Scholar 

  52. Hunt RW, Evans N, Rieger I, Kluckow M . Low superior vena cava flow and neurodevelopment at 3 years in very preterm infants. J Pediatr 2004; 145 (5): 588–592.

    Article  PubMed  Google Scholar 

  53. Murase M, Morisawa T, Ishida A . Serial assessment of right ventricular function using tissue Doppler imaging in preterm infants within 7 days of life. Early Hum Dev 2015; 91 (2): 125–130.

    Article  PubMed  Google Scholar 

  54. Murase M, Morisawa T, Ishida A . Serial assessment of left-ventricular function using tissue Doppler imaging in premature infants within 7 days of life. Pediatr Cardiol 2013; 34 (6): 1491–1498.

    Article  PubMed  Google Scholar 

  55. Hirose A, Khoo NS, Aziz K, Al-Rajaa N, van den Boom J, Savard W et al. Evolution of left ventricular function in the preterm infant. J Am Soc Echocardiogr 2015; 28 (3): 302–308.

    Article  PubMed  Google Scholar 

  56. De Waal K, Phad N, Lakkundi A, Tan P . Post-transitional adaptation of the left heart in uncomplicated, very preterm infants. Cardiol Young 2017; 24: 1–7.

    Google Scholar 

  57. Eriksen BH, Nestaas E, Hole T, Liestøl K, Støylen A, Fugelseth D . Myocardial function in premature infants: a longitudinal observational study. BMJ Open 2013; 3 (3): e002441.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Saleemi MS, Bruton K, El-Khuffash A, Kirkham C, Franklin O, Corcoran JD . Myocardial assessment using tissue Doppler imaging in preterm very low-birth weight infants before and after red blood cell transfusion. J Perinatol 2013; 33 (9): 681–686.

    Article  CAS  PubMed  Google Scholar 

  59. Eriksen BH, Nestaas E, Hole T, Liestøl K, Støylen A, Fugelseth D . Myocardial function in term and preterm infants. Influence of heart size, gestational age and postnatal maturation. Early Hum Dev 2014; 90 (7): 359–364.

    Article  PubMed  Google Scholar 

  60. Levy PT, Dioneda B, Holland MR, Sekarski TJ, Lee CK, Mathur A et al. Right ventricular function in preterm and term neonates: reference values for right ventricle areas and fractional area of change. J Am Soc Echocardiogr 2015; 28 (5): 559–569.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jain A, Mohamed A, El-Khuffash A, Connelly KA, Dallaire F, Jankov RP et al. A comprehensive echocardiographic protocol for assessing neonatal right ventricular dimensions and function in the transitional period: normative data and z scores. J Am Soc Echocardiogr 2014; 27 (12): 1293–1304.

    Article  PubMed  Google Scholar 

  62. Saini SS, Kumar P, Kumar RM . Hemodynamic changes in preterm neonates with septic shock: a prospective observational study. Pediatr Crit Care Med 2014; 15 (5): 443–450.

    Article  PubMed  Google Scholar 

  63. Naulaers G, Meyns B, Miserez M, Leunens V, Van Huffel S, Casaer P et al. Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets. Neonatology 2007; 92 (2): 120–126.

    Article  CAS  PubMed  Google Scholar 

  64. Dix LML, Van Bel F, Baerts W, Lemmers PMA . Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate. Pediatr Res 2013; 74 (5): 557–563.

    Article  CAS  PubMed  Google Scholar 

  65. Alderliesten T, Dix L, Baerts W, Caicedo A, Van Huffel S, Naulaers G et al. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr Res 2016; 79 (1-1): 55–64.

    Article  CAS  PubMed  Google Scholar 

  66. Pocivalnik M, Pichler G, Zotter H, Tax N, Müller W, Urlesberger B . Regional tissue oxygen saturation: comparability and reproducibility of different devices. J Biomed Opt 2011; 16 (5): 057004.

    Article  PubMed  CAS  Google Scholar 

  67. Pichler G, Wolf M, Roll C, Weindling MA, Greisen G, Wardle SP et al. Recommendations to increase the validity and comparability of peripheral measurements by near infrared spectroscopy in neonates. ‘Round table’, section of haematology, oxygen transport and microcirculation, 48th annual meeting of ESPR, Prague 2007. Neonatology 2008; 94 (4): 320–322.

    Article  CAS  PubMed  Google Scholar 

  68. van Bel F, Lemmers P, Naulaers G . Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls. Neonatology 2008; 94 (4): 237–244.

    Article  CAS  PubMed  Google Scholar 

  69. Höller N, Urlesberger B, Mileder L, Baik N, Schwaberger B, Pichler G . Peripheral muscle near-infrared spectroscopy in neonates: ready for clinical use? A systematic qualitative review of the literature. Neonatology 2015; 108 (4): 233–245.

    Article  PubMed  Google Scholar 

  70. Hoffman GM, Ghanayem NS, Tweddell JS . Noninvasive assessment of cardiacoutput. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2005; 12–21.

    Article  Google Scholar 

  71. Chock VY, Rose LA, Mante JV, Punn R . Near-infrared spectroscopy for detection of a significant patent ductus arteriosus. Pediatr Res 2016; 80 (5): 675–680.

    Article  PubMed  Google Scholar 

  72. Van der Laan ME, Roofthooft MTR, Fries MWA, Berger RMF, Schat TE, Van Zoonen AGJF et al. A hemodynamically significant patent ductus arteriosus does not affect cerebral or renal tissue oxygenation in preterm infants. Neonatology 2016; 110 (2): 141–147.

    Article  CAS  PubMed  Google Scholar 

  73. Underwood MA, Milstein JM, Sherman MP . Near-Infrared Spectroscopy as a screening tool for patent ductus arteriosus in extremely low birth weight infants. Neonatology 2007; 91 (2): 134–139.

    Article  PubMed  Google Scholar 

  74. Petrova A, Bhatt M, Mehta R . Regional tissue oxygenation in preterm born infants in association with echocardiographically significant patent ductus arteriosus. J Perinatol 2011; 31 (7): 460–464.

    Article  CAS  PubMed  Google Scholar 

  75. Soul JS, Hammer PE, Tsuji M, Saul JP, Bassan H, Limperopoulos C et al. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res 2007; 61 (4): 467–473.

    Article  PubMed  Google Scholar 

  76. Caicedo A, De Smet D, Vanderhaegen J, Naulaers G, Wolf M, Lemmers P et al. Impaired cerebral autoregulation using near-infrared spectroscopy and its relation to clinical outcomes in premature infants. Adv Exp Med Biol 2011; 701: 233–239.

    Article  CAS  PubMed  Google Scholar 

  77. Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 2000; 106 (4): 625–632.

    Article  CAS  PubMed  Google Scholar 

  78. Alderliesten T, Lemmers PMA, Van Haastert IC, De Vries LS, Bonestroo HJC, Baerts W et al. Hypotension in preterm neonates: low blood pressure alone does not affect neurodevelopmental outcome. J Pediatr 2014; 164 (5): 986–991.

    Article  PubMed  Google Scholar 

  79. Rhee CJ, Kibler KK, Easley RB, Andropoulos DB, Czosnyka M, Smielewski P et al. Renovascular reactivity measured by near-infrared spectroscopy. J Appl Physiol 2012; 113 (2): 307–314.

    Article  PubMed  Google Scholar 

  80. McNeill S, Gatenby JC, McElroy S, Engelhardt B . Normal cerebral, renal and abdominal regional oxygen saturations using near-infrared spectroscopy in preterm infants. J Perinatol 2011; 31 (1): 51–57.

    Article  CAS  PubMed  Google Scholar 

  81. Cerbo RM, Maragliano R, Pozzi M, Strocchio L, Mostert M, Manzoni P et al. Global perfusion assessment and tissue oxygen saturation in preterm infants: where are we? Early Hum Dev 2013; 89 (Suppl 1): S44–S46.

    Article  PubMed  Google Scholar 

  82. van der Laan ME, Schat TE, Olthuis AJ, Boezen HM, Bos AF, Kooi EM . The association between multisite near-infrared spectroscopy and routine hemodynamic measurements in relation to short-term outcome in preterms with clinical sepsis. Neonatology 2015; 108 (4): 297–304.

    Article  PubMed  Google Scholar 

  83. Hyttel-Sorensen S, Pellicer A, Alderliesten T, Austin T, van Bel F, Benders M et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ 2015; 5 (350): g7635.

    Article  Google Scholar 

  84. Plomgaard AM, van Oeveren W, Petersen TH, Alderliesten T, Austin T, van Bel F et al. The SafeBoosC II randomized trial: treatment guided by near-infrared spectroscopy reduces cerebral hypoxia without changing early biomarkers of brain injury. Pediatr Res 2016; 79 (4): 528–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Riera J, Hyttel-Sorensen S, Bravo MC, Cabañas F, López-Ortego P, Sanchez L et al. The SafeBoosC phase II clinical trial: an analysis of the interventions related with the oximeter readings. Arch Dis Child Fetal Neonatal Ed 2016; 101 (4): F333–F338.

    Article  PubMed  Google Scholar 

  86. Kenosi M, Naulaers G, Ryan CA, Dempsey EM . Current research suggests that the future looks brighter for cerebral oxygenation monitoring in preterm infants. Acta Paediatr 2015; 104 (3): 225–231.

    Article  CAS  PubMed  Google Scholar 

  87. Corbisier DE, Meautsart C, Dyson RM, Latter JL, Berry MJ, Clifton VL et al. Influence of sympathetic activity in the control of peripheral microvascular tone in preterm infants. Pediatr Res 2016; 80 (6): 793–799.

    Article  Google Scholar 

  88. Freidl T, Baik N, Pichler G, Schwaberger B, Zingerle B, Avian A et al. Haemodynamic transition after birth: a new tool for non-invasive cardiac output monitoring. Neonatology 2017; 111 (1): 55–60.

    Article  PubMed  Google Scholar 

  89. Rozé JC, Cambonie G, Marchand-Martin L, Gournay V, Durrmeyer X, Durox M et al. Association between early screening for patent ductus arteriosus and in-hospital mortality among extremely preterm infants. JAMA 2015; 313 (24): 2441–2448.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Flamant.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escourrou, G., Renesme, L., Zana, E. et al. How to assess hemodynamic status in very preterm newborns in the first week of life?. J Perinatol 37, 987–993 (2017). https://doi.org/10.1038/jp.2017.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2017.57

This article is cited by

Search

Quick links