State of the Art

Manipulating the microbiome: evolution of a strategy to prevent S. aureus disease in children

Abstract

Hospitalized infants have the highest rates of invasive Staphylococcus aureus disease of any population and infection control strategies such as decolonization have been insufficient. For decades, researchers began studying the microbiome in search of new prevention strategies. The resident microbiota was found to be closely associated with susceptibility and at times, resistance to S. aureus colonization. The evolution of nucleic acid based techniques has enhanced our understanding of the complex relationship between the nasal microbiota and S. aureus colonization. We review what is known about bacterial communities in the nasal cavity of infants and discuss how future microbiome studies may help identify novel interventions to protect high-risk infants from S. aureus disease.

  • Subscribe to Journal of Perinatology for full access:

    $2.1E+2

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    , , , , , et al. The changing epidemiology of Staphylococcus aureus bloodstream infection: a multinational population-based surveillance study. Clin Microbiol Infect 2013; 19(5): 465–471.

  2. 2.

    , , , , , . Device-associated infections among neonatal intensive care unit patients: incidence and associated pathogens reported to the National Healthcare Safety Network, 2006-2008. Infect Control Hosp Epidemiol 2012; 33(12): 1200–1206.

  3. 3.

    , , , , , et al. Staphylococcus aureus and surgical site infections: benefits of screening and decolonization before surgery. J Hosp Infect 2016; 94(3): 295–304.

  4. 4.

    , , , , , et al. Bloodstream infections in hospitalized children: epidemiology and antimicrobial susceptibilities. Pediatr Infect Dis J 2016; 35(5): 507–510.

  5. 5.

    , , . Staphylococcus aureus determinants for nasal colonization. Trends Microbiol 2012; 20(5): 243–250.

  6. 6.

    , , , , . Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 2001; 344(1): 11–16.

  7. 7.

    , . Nasal carriage of Staphylococcus aureus and prevention of nosocomial infections. Infection 2005; 33(1): 3–8.

  8. 8.

    , , , , , et al. Active surveillance cultures and decolonization to reduce Staphylococcus aureus infections in the neonatal intensive care unit. Infect Control Hosp Epidemiol 2016; 37(4): 381–387.

  9. 9.

    , , , , . Use of bacterial interference to control a staphylococcal nursery outbreak: deliberate colonization of all infants with the 502a strain of Staphylococcus aureus. Am J Dis Child 1967113(3): 291–300.

  10. 10.

    , . Decolonization to prevent Staphylococcus aureus transmission and infections in the neonatal intensive care unit. J Perinatol 2014; 34(11): 805–810.

  11. 11.

    , , , , , . Health-care-associated infections in neonates, children, and adolescents: an analysis of paediatric data from the European Centre for Disease Prevention and Control point-prevalence survey. Lancet Infect Dis 2017; 17(4): 381–389.

  12. 12.

    , , , , , et al. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Int Med 2013; 173(21): 1970–1978.

  13. 13.

    , , , , , et al. Burden of Invasive Staphylococcus aureus Infections in hospitalized infants. JAMA Pediatr 2015; 169(12): 1105–1111.

  14. 14.

    , , , , , et al. Trends in invasive methicillin-resistant Staphylococcus aureus infections. Pediatrics 2013; 132(4): e817–e824.

  15. 15.

    , , , , , et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus strains in the neonatal intensive care unit: an infection prevention and patient safety challenge. Clin Microbiol Infect 2016; 22(7): 645 e641–645 e648.

  16. 16.

    , , , , , et al. Nasal commensal Staphylococcus epidermidis counteracts influenza virus. Sci Rep 2016; 6: 27870.

  17. 17.

    , , , . Bacterial interference: its effect on nursery-acquired infection with Staphylococcus aureus. II. The Ohio epidemic. Am J Dis Child 1963; 105: 655–662.

  18. 18.

    , , , . Bacterial interference: its effect on nursery-acquired infection with Staphylococcus aureus. I. Preliminary observations on artificial colonzation of newborns. Am J Dis Child 1963; 105: 646–654.

  19. 19.

    , , . Fatal septicemia due to Staphylococcus aureus 502a: Report of a case and review of the infectious complications of bacterial interference programs. Am J Dis Child 1972; 123(1): 45–48.

  20. 20.

    , , . Control of a staphylococcal outbreak in a nursery: use of bacterial interference. JAMA 1965; 193(9): 699–704.

  21. 21.

    , , . Bacterial interference between strains of Staphylococcus aureus, 1960 to 1970. Am J Dis Child 1971; 121(2): 148–152.

  22. 22.

    , , , , , et al. Auxotrophic mutant of Staphylococcus aureus interferes with nasal colonization by the wild type. Microbes Infect 2011; 13(12-13): 1081–1090.

  23. 23.

    , , , , , et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 2010; 465(7296): 346–349.

  24. 24.

    , , , , , et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 2016; 535(7613): 511–516.

  25. 25.

    , , , , , et al. Bacterial interference among nasal inhabitants: eradication of Staphylococcus aureus from nasal cavities by artificial implantation of Corynebacterium sp. J Hosp Infect 2000; 44(2): 127–133.

  26. 26.

    , , , , . Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Front Microbiol 2016; 7: 1230.

  27. 27.

    , , , , . Use of Corynebacterium pseudodiphtheriticum for elimination of Staphylococcus aureus from the nasal cavity in volunteers exposed to abnormal microclimate and altered gaseous environment. Probiotics Antimicrob Proteins 2013; 5(4): 233–238.

  28. 28.

    , , , , , et al. Staphylococcus epidermidis protection against Staphylococcus aureus colonization in people living with human immunodeficiency virus in an inner-city outpatient population: a cross-sectional study. Open Forum Infect Dis 2016; 3(4): ofw234.

  29. 29.

    , , . Intranasal application of S. epidermidis prevents colonization by methicillin-resistant Staphylococcus aureus in mice. PLoS ONE 2011; 6(10): e25880.

  30. 30.

    , , , , , et al. Diversity of the human intestinal microbial flora. Science 2005; 308(5728): 1635–1638.

  31. 31.

    , , , , , et al. Staphylococcus aureus and the ecology of the nasal microbiome. Sci Adv 2015; 1(5): e1400216.

  32. 32.

    , , , , , et al. Patient nostril microbial flora: individual-dependency and diversity precluding prediction of Staphylococcus aureus acquisition. Clin Microbiol Infect 2014; 20(1): 70–78.

  33. 33.

    , , , , , . The human nasal microbiota and Staphylococcus aureus carriage. PLoS ONE 2010; 5(5): e10598.

  34. 34.

    , , , , , . Correlation between nasal microbiome composition and remote purulent skin and soft tissue infections. Infect Immun 2015; 83(2): 802–811.

  35. 35.

    , , , , , et al. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage. Cell Host Microbe 2013; 14(6): 631–640.

  36. 36.

    , , , , , et al. MRSA colonization and the nasal microbiome in adults at high risk of colonization and infection. J Infect 2015; 71(6): 649–657.

  37. 37.

    , , , . Trophically unique species are vulnerable to cascading extinction. Am Nat 2008; 171(5): 568–579.

  38. 38.

    , , , , . The intestinal microbiome in early life: health and disease. Front Immunol 2014; 5: 427.

  39. 39.

    , , , , . Shifts in human skin and nares microbiota of healthy children and adults. Genome Med 2012; 4(10): 77–77.

  40. 40.

    , , , , , et al. A poke into the diversity and associations within human anterior nare microbial communities. ISME J 2010; 4(7): 839–851.

  41. 41.

    , , , , , et al. The adult nasopharyngeal microbiome as a determinant of pneumococcal acquisition. Microbiome 2014; 2: 44.

  42. 42.

    , , , , , et al. A study of the infant nasal microbiome development over the first year of life and in relation to their primary adult caregivers using cpn60 universal target (UT) as a phylogenetic marker. PLoS ONE 2016; 11(3): e0152493.

  43. 43.

    , , , , . The infant microbiome development: mom matters. Trends Mol Med 2015; 21(2): 109–117.

  44. 44.

    , , , , , et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med 2014; 190(11): 1283–1292.

  45. 45.

    , , , , , et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107(26): 11971–11975.

  46. 46.

    , . Role of the microbiota in Immunity and inflammation. Cell 2014; 157(1): 121–141.

  47. 47.

    , , , , , et al. Nasopharyngeal microbiota in infants with acute otitis media. J Infect Dis 2012; 205(7): 1048–1055.

  48. 48.

    , , , , , et al. The impact of breastfeeding on nasopharyngeal microbial communities in infants. Am J Respir Crit Care Med 2014; 190(3): 298–308.

  49. 49.

    , , , , , et al. Seven-valent pneumococcal conjugate vaccine and nasopharyngeal microbiota in healthy children. Emerg Infect Dis 2014; 20(2): 201–210.

  50. 50.

    , , , , , et al. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PLoS ONE 2011; 6(2): e17035.

  51. 51.

    , . No Vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol 2015; 194(9): 4081–4087.

  52. 52.

    , , , , , et al. Culture and molecular-based profiles show shifts in bacterial communities of the upper respiratory tract that occur with age. ISME J 2015; 9(5): 1246–1259.

  53. 53.

    , , , , et al. Enteric dysbiosis promotes antibiotic-resistant bacterial infection: systemic dissemination of resistant and commensal bacteria through epithelial transcytosis. Am J Physiol Gastrointest Liver Physiol 2014; 307(8): G824–G835.

  54. 54.

    , , , , , . Microbial communities of the upper respiratory tract and otitis media in children. mBio 2011; 2(1): e00245–00310.

  55. 55.

    , , . Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 2004; 4(3): 144–154.

  56. 56.

    , , . Deciphering the human microbiome using next-generation sequencing data and bioinformatics approaches. Methods (San Diego, Calif) 2015; 79-80: 52–59.

  57. 57.

    , , , , , et al. Topical decolonization does not eradicate the skin microbiota of community-dwelling or hospitalized adults. Antimicrob Agents Chemother 2016; 60(12): 7303–7312.

Download references

Acknowledgements

This work was supported in part by the Agency for Healthcare Research and Quality R01HS022872.

Author information

Affiliations

  1. Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA

    • D F Khamash
    • , A Voskertchian
    •  & A M Milstone
  2. Department of Hospital Epidemiology and Infection Control, Johns Hopkins Hospital, Baltimore, MD, USA

    • A M Milstone

Authors

  1. Search for D F Khamash in:

  2. Search for A Voskertchian in:

  3. Search for A M Milstone in:

Competing interests

The authors declare no conflict of interest.

Corresponding author

Correspondence to A M Milstone.