Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

State-of-the-Art

Reliable and developmentally appropriate study end points are needed to achieve drug development for treatment of pediatric pulmonary arterial hypertension

Abstract

Objective:

To identify suitable end points and surrogates for pediatric pulmonary arterial hypertension (PAH) as the lack of developmentally appropriate end point and clinical trials contribute to the unmet medical need.

Study Design:

Reviewed the efficacy end points and surrogates for all trials (1995 to 2013) that were submitted to the Food and Drug Administration (FDA) to support the approval of PAH therapy and conducted literature search.

Results:

An increase in the 6 min walking distance (6MWD) was used as a primary end point in 8/9 adult PAH trials. This end point is not suitable for infants and young children because of performance limitations and lack of control data. One adult PAH trial used time to the first morbidity or mortality event as a primary end point, which could potentially be used in pediatric PAH trials. In the sildenafil pediatric PAH trial, the change in pulmonary vascular resistance index or mean pulmonary artery pressure was used as a surrogate for the 6MWD to assess exercise capacity. However, two deaths and three severe adverse events during the catheterizations made this an unacceptably high-risk surrogate. The INOmax persistent pulmonary hypertension of the newborn trial used a reduction in initiation of extracorporeal membrane oxygenation treatment as a primary end point, which is not feasible for other pediatric PAH trials. A Literature review revealed none of the existing noninvasive markers are fully validated as surrogates to assess PAH efficacy and long-term safety.

Conclusions:

For pediatric PAH trials, clinical end points are acceptable, and novel validated surrogates would be helpful. FDA seeks collaboration with academia, industry and parents to develop other suitable and possibly more efficient efficacy end points to facilitate pediatric PAH drug development.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Haworth SG, Beghetti M . Assessment of endpoints in the pediatric population: congenital heart disease and idiopathic pulmonary arterial hypertension. Curr Opin Pulm Med 2010; 16 (Suppl 1): S35–S41.

    Article  Google Scholar 

  2. Takatsuki S, Ivy DD . Current challenges in pediatric pulmonary hypertension. Semin Respir Crit Care Med 2013; 34: 627–644.

    Article  Google Scholar 

  3. Steinhorn RH . Neonatal pulmonary hypertension. Pediatr Crit Care Med 2010; 11: S79–S84.

    Article  Google Scholar 

  4. Snow JL, Kawut SM . Surrogate end points in pulmonary arterial hypertension: assessing the response to therapy. Clin Chest Med 2007; 28: 75–89, viii.

    Article  Google Scholar 

  5. FDA. Guidance for Industry, Qualification Process for Drug Development Tools. Available at http://www.fda.gov/downloads/drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM230597.pdf 2010.

  6. Fleming TR, Powers JH . Biomarkers and surrogate endpoints in clinical trials. Stat Med 2012; 31: 2973–2984.

    Article  Google Scholar 

  7. Ivy DD, Abman SH, Barst RJ, Berger RM, Bonnet D, Fleming TR et al. Pediatric pulmonary hypertension. J Am Coll Cardiol 2013; 62: D117–D126.

    Article  Google Scholar 

  8. Jone PN, Ivy DD . Echocardiography in pediatric pulmonary hypertension. Front Pediatr 2014; 2: 124.

    Article  Google Scholar 

  9. Colvin KL, Dufva MJ, Delaney RP, Ivy DD, Stenmark KR, Yeager ME . Biomarkers for pediatric pulmonary arterial hypertension–a call to collaborate. Front Pediatr 2014; 2: 7.

    Article  Google Scholar 

  10. Gurudevan SV, Malouf PJ, Kahn AM, Auger WR, Waltman TJ, Madani M et al. Noninvasive assessment of pulmonary vascular resistance using Doppler tissue imaging of the tricuspid annulus. J Am Soc Echocardiogr 2007; 20: 1167–1171.

    Article  Google Scholar 

  11. Huez S, Vachiery JL, Unger P, Brimioulle S, Naeije R . Tissue Doppler imaging evaluation of cardiac adaptation to severe pulmonary hypertension. Am J Cardiol 2007; 100: 1473–1478.

    Article  Google Scholar 

  12. Takatsuki S, Nakayama T, Jone PN, Wagner BD, Naoi K, Ivy DD et al. Tissue Doppler imaging predicts adverse outcome in children with idiopathic pulmonary arterial hypertension. J Pediatr 2012; 161: 1126–1131.

    Article  Google Scholar 

  13. Humbert M, Gerry CJ, Khanna D . Early detection and management of pulmonary arterial hypertension. Eur Respir Rev 2012; 21: 306–312.

    Article  Google Scholar 

  14. Barrier M, Meloche J, Jacob MH, Courboulin A, Provencher S, Bonnet S . Today's and tomorrow's imaging and circulating biomarkers for pulmonary arterial hypertension. Cell Mol Life Sci 2012; 69: 2805–2831.

    Article  CAS  Google Scholar 

  15. Benza R, Biederman R, Murali S, Gupta H . Role of cardiac magnetic resonance imaging in the management of patients with pulmonary arterial hypertension. J Am Coll Cardiol 2008; 52: 1683–1692.

    Article  Google Scholar 

  16. Dimitroulas T, Mavrogeni S, Kitas GD . Imaging modalities for the diagnosis of pulmonary hypertension in systemic sclerosis. Nat Rev Rheumatol 2012; 8: 203–213.

    Article  CAS  Google Scholar 

  17. Blalock S, Chan F, Rosenthal D, Ogawa M, Maxey D, Feinstein J . Magnetic resonance imaging of the right ventricle in pediatric pulmonary arterial hypertension. Pulm Circ 2013; 3: 350–355.

    Article  Google Scholar 

  18. Kondo C, Caputo GR, Masui T, Foster E, O'Sullivan M, Stulbarg MS et al. Pulmonary hypertension: pulmonary flow quantification and flow profile analysis with velocity-encoded cine MR imaging. Radiology 1992; 183: 751–758.

    Article  CAS  Google Scholar 

  19. Moledina S, Pandya B, Bartsota M, Mortensen KH, McMillan M, Quyam S et al. Prognostic significance of cardiac magnetic resonance imaging in children with pulmonary hypertension. Circ Cardiovasc Imaging 2013; 6: 407–414.

    Article  Google Scholar 

  20. Laffon E, Vallet C, Bernard V, Montaudon M, Ducassou D, Laurent F et al. A computed method for noninvasive MRI assessment of pulmonary arterial hypertension. J Appl Physiol 2004; 96: 463–468.

    Article  Google Scholar 

  21. Chin KM, Kingman M, de Lemos JA, Warner JJ, Reimold S, Peshock R et al. Changes in right ventricular structure and function assessed using cardiac magnetic resonance imaging in bosentan-treated patients with pulmonary arterial hypertension. Am J Cardiol 2008; 101: 1669–1672.

    Article  Google Scholar 

  22. Michelakis ED, Tymchak W, Noga M, Webster L, Wu XC, Lien D et al. Long-term treatment with oral sildenafil is safe and improves functional capacity and hemodynamics in patients with pulmonary arterial hypertension. Circulation 2003; 108: 2066–2069.

    Article  CAS  Google Scholar 

  23. Roeleveld RJ, Vonk-Noordegraaf A, Marcus JT, Bronzwaer JG, Marques KM, Postmus PE et al. Effects of epoprostenol on right ventricular hypertrophy and dilatation in pulmonary hypertension. Chest 2004; 125: 572–579.

    Article  CAS  Google Scholar 

  24. Roeleveld RJ, Marcus JT, Boonstra A, Postmus PE, Marques KM, Bronzwaer JG et al. A comparison of noninvasive MRI-based methods of estimating pulmonary artery pressure in pulmonary hypertension. J Magn Reson Imaging 2005; 22: 67–72.

    Article  Google Scholar 

  25. Lundgrin EL, Park MM, Sharp J, Tang WH, Thomas JD, Asosingh K et al. Fasting 2-deoxy-2-[18 F]fluoro-D-glucose positron emission tomography to detect metabolic changes in pulmonary arterial hypertension hearts over 1 year. Ann Am Thorac Soc 2013; 10: 1–9.

    Article  Google Scholar 

  26. Marsboom G, Wietholt C, Haney CR, Toth PT, Ryan JJ, Morrow E et al. Lung (1)(8)F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med 2012; 185: 670–679.

    Article  CAS  Google Scholar 

  27. Osthaus WA, Huber D, Beck C, Winterhalter M, Boethig D, Wessel A et al. Comparison of electrical velocimetry and transpulmonary thermodilution for measuring cardiac output in piglets. Paediatr Anaesth 2007; 17: 749–755.

    Article  Google Scholar 

  28. Suttner S, Schollhorn T, Boldt J, Mayer J, Rohm KD, Lang K et al. Noninvasive assessment of cardiac output using thoracic electrical bioimpedance in hemodynamically stable and unstable patients after cardiac surgery: a comparison with pulmonary artery thermodilution. Intensive Care Med 2006; 32: 2053–2058.

    Article  Google Scholar 

  29. Zoremba N, Bickenbach J, Krauss B, Rossaint R, Kuhlen R, Schalte G . Comparison of electrical velocimetry and thermodilution techniques for the measurement of cardiac output. Acta Anaesthesiol Scand 2007; 51: 1314–1319.

    Article  CAS  Google Scholar 

  30. Noori S, Drabu B, Soleymani S, Seri I . Continuous non-invasive cardiac output measurements in the neonate by electrical velocimetry: a comparison with echocardiography. Arch Dis Child Fetal Neonatal Ed 2012; 97: F340–F343.

    Article  Google Scholar 

  31. Frantz RP, McDevitt S, Walker S . Baseline NT-proBNP correlates with change in 6- minute walk distance in patients with pulmonary arterial hypertension in the pivotal inhaled treprostinil study TRIUMPH-1. J Heart Lung Transplant 2012; 31: 811–816.

    Article  Google Scholar 

  32. Jais X, D'Armini AM, Jansa P, Torbicki A, Delcroix M, Ghofrani HA et al. Bosentan for treatment of inoperable chronic thromboembolic pulmonary hypertension: BENEFiT (Bosentan Effects in iNopErable Forms of chronIc Thromboembolic pulmonary hypertension), a randomized, placebo-controlled trial. J Am Coll Cardiol 2008; 52: 2127–2134.

    Article  CAS  Google Scholar 

  33. Galie N, Rubin L, Hoeper M, Jansa P, Al-Hiti H, Meyer G et al. Treatment of patients with mildly symptomatic pulmonary arterial hypertension with bosentan (EARLY study): a double-blind, randomised controlled trial. Lancet 2008; 371: 2093–2100.

    Article  CAS  Google Scholar 

  34. Gabler NB, French B, Strom BL, Palevsky HI, Taichman DB, Kawut SM et al. Validation of 6- minute walk distance as a surrogate end point in pulmonary arterial hypertension trials. Circulation 2012; 126: 349–356.

    Article  CAS  Google Scholar 

  35. Ventetuolo CE, Gabler NB, Fritz JS, Smith KA, Palevsky HI, Klinger JR et al. Are hemodynamics surrogate end points in pulmonary arterial hypertension? Circulation 2014; 130: 768–775.

    Article  Google Scholar 

  36. FDA. Clinical Outcome Assessment (COA): Glossary of Terms. Available at http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/ucm370262.htm#pro 2015.

  37. Butte NF, Ekelund U, Westerterp KR . Assessing physical activity using wearable monitors: measures of physical activity. Med Sci Sports Exerc 2012; 44: S5–S12.

    Article  Google Scholar 

  38. Long AC, Palermo TM, Manees AM . Brief report: using actigraphy to compare physical activity levels in adolescents with chronic pain and healthy adolescents. J Pediatr Psychol 2008; 33: 660–665.

    Article  Google Scholar 

  39. Ulrich S, Fischler M, Speich R, Bloch KE . Wrist actigraphy predicts outcome in patients with pulmonary hypertension. Respiration 2013; 86: 45–51.

    Article  Google Scholar 

  40. Pugh ME, Buchowski MS, Robbins IM, Newman JH, Hemnes AR . Physical activity limitation as measured by accelerometry in pulmonary arterial hypertension. Chest 2012; 142: 1391–1398.

    Article  Google Scholar 

Download references

Acknowledgements

This work was in part supported by the FDA Chief Scientist Challenge Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Sun.

Ethics declarations

Competing interests

Views expressed in this manuscript are those of the authors and do not necessarily reflect official positions or policies of the FDA. This research received no grant from any funding agency in the public, commercial or not-for-profit sectors. The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Stockbridge, N., Ariagno, R. et al. Reliable and developmentally appropriate study end points are needed to achieve drug development for treatment of pediatric pulmonary arterial hypertension. J Perinatol 36, 1029–1033 (2016). https://doi.org/10.1038/jp.2016.103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2016.103

This article is cited by

Search

Quick links