Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Diminished growth and lower adiposity in hyperglycemic very low birth weight neonates at 4 months corrected age

Abstract

Objective:

Characterize the relationship between neonatal hyperglycemia and growth and body composition at 4 months corrected age (CA) in very low birth weight (VLBW) preterm infants.

Study design:

A prospective study of VLBW appropriate-for-gestation infants (N=53). All blood glucose measurements in the first 14 days and nutritional intake and illness markers until discharge were recorded. Standard anthropometrics and body composition via air displacement plethysmography were measured near term CA and 4 months CA. Relationships between hyperglycemia and anthropometrics and body composition were examined using multivariate linear regression.

Results:

Infants with >5 days of hyperglycemia were lighter (5345 vs 6455 g, P0.001), shorter (57.9 vs 60.9 cm, P0.01), had smaller occipital-frontal head circumference (39.4 vs 42.0 cm, P0.05) and were leaner (percent body fat 15.0 vs 23.8, P0.01) at 4 months CA than those who did not have hyperglycemia, including after correcting for nutritional and illness factors.

Conclusions:

Neonatal hyperglycemia in VLBW infants is associated with decreased body size and lower adiposity at 4 months CA independent of nutritional deficit, insulin use and illness. Downregulation of the growth hormone axis may be responsible. These changes may influence long-term growth and cognitive development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Rozance PJ, Hay WW Jr . Neonatal hyperglycemia. Neoreviews 2010; 11 (11): e632–e639.

    Article  Google Scholar 

  2. Hays SP, Smith EO, Sunehag AL . Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants. Pediatrics 2006; 118 (5): 1811–1818.

    Article  PubMed  Google Scholar 

  3. Kao LS, Morris BH, Lally KP, Stewart CD, Huseby V, Kennedy KA . Hyperglycemia and morbidity and mortality in extremely low birth weight infants. J Perinatol 2006; 26 (12): 730–736.

    Article  CAS  PubMed  Google Scholar 

  4. Auerbach A, Eventov-Friedman S, Arad I, Peleg O, Bdolah-Abram T, Bar-Oz B et al. Long duration of hyperglycemia in the first 96 hours of life is associated with severe intraventricular hemorrhage in preterm infants. J Pediatr 2013; 163 (2): 388–393.

    Article  CAS  PubMed  Google Scholar 

  5. Mohsen L, Abou-Alam M, El-Dib M, Labib M, Elsada M, Aly H . A prospective study on hyperglycemia and retinopathy of prematurity. J Perinatol 2014; 34 (6): 453–457.

    Article  CAS  PubMed  Google Scholar 

  6. Mohamed S, Murray JC, Dagle JM, Colaizy T . Hyperglycemia as a risk factor for the development of retinopathy of prematurity. BMC Pediatr 2013; 13: 78–2431-13-78.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ertl T, Gyarmati J, Gaal V, Szabo I . Relationship between hyperglycemia and retinopathy of prematurity in very low birth weight infants. Biol Neonate 2006; 89 (1): 56–59.

    Article  PubMed  Google Scholar 

  8. Mitanchez-Mokhtari D, Lahlou N, Kieffer F, Magny JF, Roger M, Voyer M . Both relative insulin resistance and defective islet beta-cell processing of proinsulin are responsible for transient hyperglycemia in extremely preterm infants. Pediatrics 2004; 113 (3 Pt 1): 537–541.

    Article  PubMed  Google Scholar 

  9. Ogilvy-Stuart AL, Beardsall K . Management of hyperglycaemia in the preterm infant. Arch Dis Child Fetal Neonatal Ed 2010; 95 (2): F126–F131.

    Article  CAS  PubMed  Google Scholar 

  10. van der Lugt NM, Smits-Wintjens VE, van Zwieten PH, Walther FJ . Short and long term outcome of neonatal hyperglycemia in very preterm infants: a retrospective follow-up study. BMC Pediatr 2010; 10: 52–2431-10-52.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ramel SE, Long JD, Gray H, Durrwachter-Erno K, Demerath EW, Rao R . Neonatal hyperglycemia and diminished long-term growth in very low birth weight preterm infants. J Perinatol 2013; 33 (11): 882–886.

    Article  CAS  PubMed  Google Scholar 

  12. Ramel SE, Gray HL, Ode KL, Younge N, Georgieff MK, Demerath EW . Body composition changes in preterm infants following hospital discharge: comparison with term infants. J Pediatr Gastroenterol Nutr 2011; 53 (3): 333–338.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Johnson MJ, Wootton SA, Leaf AA, Jackson AA . Preterm birth and body composition at term equivalent age: a systematic review and meta-analysis. Pediatrics 2012; 130 (3): e640–e649.

    Article  PubMed  Google Scholar 

  14. Roggero P, Gianni ML, Amato O, Orsi A, Piemontese P, Puricelli V et al. Influence of protein and energy intakes on body composition of formula-fed preterm infants after term. J Pediatr Gastroenterol Nutr 2008; 47 (3): 375–378.

    Article  CAS  PubMed  Google Scholar 

  15. Cooke RJ, Griffin I . Altered body composition in preterm infants at hospital discharge. Acta Paediatr 2009; 98 (8): 1269–1273.

    Article  PubMed  Google Scholar 

  16. Roggero P, Gianni ML, Amato O, Liotto N, Morlacchi L, Orsi A et al. Growth and fat-free mass gain in preterm infants after discharge: a randomized controlled trial. Pediatrics 2012; 130 (5): e1215–e1221.

    Article  PubMed  Google Scholar 

  17. Simon L, Borrego P, Darmaun D, Legrand A, Roze JC, Chauty-Frondas A . Effect of sex and gestational age on neonatal body composition. Br J Nutr 2013; 109 (6): 1105–1108.

    Article  CAS  PubMed  Google Scholar 

  18. Simon L, Frondas-Chauty A, Senterre T, Flamant C, Darmaun D, Roze JC . Determinants of body composition in preterm infants at the time of hospital discharge. Am J Clin Nutr 2014; 100 (1): 98–104.

    Article  CAS  PubMed  Google Scholar 

  19. Touger L, Looker HC, Krakoff J, Lindsay RS, Cook V, Knowler WC . Early growth in offspring of diabetic mothers. Diabetes Care 2005; 28 (3): 585–589.

    Article  PubMed  Google Scholar 

  20. Dode MA, Santos IS, Gonzalez DA . Anthropometry from birth to 24 months among offspring of women with gestational diabetes: 2004 Pelotas Birth Cohort. J Dev Orig Health Dis 2011; 2 (3): 144–151.

    Article  CAS  PubMed  Google Scholar 

  21. Ramel SE, Demerath EW, Gray HL, Younge N, Boys C, Georgieff MK . The relationship of poor linear growth velocity with neonatal illness and two-year neurodevelopment in preterm infants. Neonatology 2012; 102 (1): 19–24.

    Article  PubMed  Google Scholar 

  22. Belfort MB, Gillman MW, Buka SL, Casey PH, McCormick MC . Preterm infant linear growth and adiposity gain: trade-offs for later weight status and intelligence quotient. J Pediatr 2013; 163 (6): 1564–1569 e2.

    Article  PubMed  Google Scholar 

  23. Pfister KM, Gray HL, Miller NC, Demerath EW, Georgieff MK, Ramel SE . Exploratory study of the relationship of fat-free mass to speed of brain processing in preterm infants. Pediatr Res 2013; 74 (5): 576–583.

    Article  CAS  PubMed  Google Scholar 

  24. Fenton TR . A new growth chart for preterm babies: Babson and Benda's chart updated with recent data and a new format. BMC Pediatr 2003; 3: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Urlando A, Dempster P, Aitkens S . A new air displacement plethysmograph for the measurement of body composition in infants. Pediatr Res 2003; 53 (3): 486–492.

    Article  PubMed  Google Scholar 

  26. Ma G, Yao M, Liu Y, Lin A, Zou H, Urlando A et al. Validation of a new pediatric air-displacement plethysmograph for assessing body composition in infants. Am J Clin Nutr 2004; 79 (4): 653–660.

    Article  CAS  PubMed  Google Scholar 

  27. Ellis KJ, Yao M, Shypailo RJ, Urlando A, Wong WW, Heird WC . Body-composition assessment in infancy: air-displacement plethysmography compared with a reference 4-compartment model. Am J Clin Nutr 2007; 85 (1): 90–95.

    Article  CAS  PubMed  Google Scholar 

  28. Roggero P, Gianni ML, Amato O, Piemontese P, Morniroli D, Wong WW et al. Evaluation of air-displacement plethysmography for body composition assessment in preterm infants. Pediatr Res 2012; 72 (3): 316–320.

    Article  CAS  PubMed  Google Scholar 

  29. Fomon SJ, Haschke F, Ziegler EE, Nelson SE . Body composition of reference children from birth to age 10 years. Am J Clin Nutr 1982; 35 (5 Suppl): 1169–1175.

    Article  CAS  PubMed  Google Scholar 

  30. Richardson DK, Gray JE, McCormick MC, Workman K, Goldmann DA . Score for Neonatal Acute Physiology: a physiologic severity index for neonatal intensive care. Pediatrics 1993; 91 (3): 617–623.

    CAS  PubMed  Google Scholar 

  31. Stenhouse E, Wright DE, Hattersley AT, Millward BA . Maternal glucose levels influence birthweight and 'catch-up' and 'catch-down' growth in a large contemporary cohort. Diabet Med 2006; 23 (11): 1207–1212.

    Article  CAS  PubMed  Google Scholar 

  32. Knight B, Shields BM, Hill A, Powell RJ, Wright D, Hattersley AT . The impact of maternal glycemia and obesity on early postnatal growth in a nondiabetic Caucasian population. Diabetes Care 2007; 30 (4): 777–783.

    Article  PubMed  Google Scholar 

  33. Ong KK, Diderholm B, Salzano G, Wingate D, Hughes IA, MacDougall J et al. Pregnancy insulin, glucose, and BMI contribute to birth outcomes in nondiabetic mothers. Diabetes Care 2008; 31 (11): 2193–2197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Regnault N, Botton J, Forhan A, Hankard R, Thiebaugeorges O, Hillier TA et al. Determinants of early ponderal and statural growth in full-term infants in the EDEN mother-child cohort study. Am J Clin Nutr 2010; 92 (3): 594–602.

    Article  CAS  PubMed  Google Scholar 

  35. Ode KL, Gray HL, Ramel SE, Georgieff MK, Demerath EW . Decelerated early growth in infants of overweight and obese mothers. J Pediatr 2012; 161 (6): 1028–1034.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Blanco CL, McGill-Vargas LL, Gastaldelli A, Seidner SR, McCurnin DC, Leland MM et al. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons. Endocrinology 2015; 156 (3): 813–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tayman C, Yis U, Hirfanoglu I, Oztekin O, Goktas G, Bilgin BC . Effects of hyperglycemia on the developing brain in newborns. Pediatr Neurol 2014; 51 (2): 239–245.

    Article  PubMed  Google Scholar 

  38. Rosa AP, Jacques CE, de Souza LO, Bitencourt F, Mazzola PN, Coelho JG et al. Neonatal hyperglycemia induces oxidative stress in the rat brain: the role of pentose phosphate pathway enzymes and NADPH oxidase. Mol Cell Biochem 2015; 403 (1–2): 159–167.

    Article  CAS  PubMed  Google Scholar 

  39. Gisslen T, Ennis K, Bhandari V, Rao R . Recurrent hypoinsulinemic hyperglycemia in neonatal rats increases PARP-1 and NF-κB expression and leads to microglial activation in the cerebral cortex. Pediatr Res 2015. (doi:10.1038/pr.2015.136; e-pub ahead of print).

    Article  CAS  PubMed  Google Scholar 

  40. Hansen-Pupp I, Hellstrom-Westas L, Cilio CM, Andersson S, Fellman V, Ley D . Inflammation at birth and the insulin-like growth factor system in very preterm infants. Acta Paediatr 2007; 96 (6): 830–836.

    Article  CAS  PubMed  Google Scholar 

  41. Hernandez MI, Rossel K, Pena V, Cavada G, Avila A, Iniguez G et al. Leptin and IGF-I/II during the first weeks of life determine body composition at 2 years in infants born with very low birth weight. J Pediatr Endocrinol Metab 2012; 25 (9–10): 951–955.

    CAS  PubMed  Google Scholar 

  42. Larnkjaer A, Molgaard C, Michaelsen KF . Early nutrition impact on the insulin-like growth factor axis and later health consequences. Curr Opin Clin Nutr Metab Care 2012; 15 (3): 285–292.

    Article  CAS  PubMed  Google Scholar 

  43. Stigson L, Kistner A, Sigurdsson J, Engstrom E, Magnusson P, Hellstrom A et al. Bone and fat mass in relation to postnatal levels of insulin-like growth factors in prematurely born children at 4 y of age. Pediatr Res 2014; 75 (4): 544–550.

    Article  CAS  PubMed  Google Scholar 

  44. Yumani DF, Lafeber HN, van Weissenbruch MM . Dietary proteins and IGF I levels in preterm infants: determinants of growth, body composition, and neurodevelopment. Pediatr Res 2015; 77 (1–2): 156–163.

    Article  CAS  PubMed  Google Scholar 

  45. Beardsall K, Vanhaesebrouck S, Frystyk J, Ogilvy-Stuart AL, Vanhole C, van Weissenbruch M et al. Relationship between insulin-like growth factor I levels, early insulin treatment, and clinical outcomes of very low birth weight infants. J Pediatr 2014; 164 (5): 1038–1044 .e1.

    Article  CAS  PubMed  Google Scholar 

  46. Silverman BL, Rizzo TA, Cho NH, Metzger BE . Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center. Diabetes Care 1998; 21 (Suppl 2): B142–B149.

    PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance of study staff member Bridget Davern in data collection and the grant from the Amplatz Scholars Fund of the University of Minnesota Foundation, which were both integral to completing the study. Amplatz Scholar Award, University of Minnesota Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Scheurer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheurer, J., Gray, H., Demerath, E. et al. Diminished growth and lower adiposity in hyperglycemic very low birth weight neonates at 4 months corrected age. J Perinatol 36, 145–150 (2016). https://doi.org/10.1038/jp.2015.154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2015.154

This article is cited by

Search

Quick links