Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Noninvasive cardiac monitoring in pregnancy: impedance cardiography versus echocardiography

Abstract

Objective:

The objective of this study was to report thoracic impedance cardiography (ICG) measurements and compare them with echocardiography (echo) measurements throughout pregnancy and in varied maternal positions.

Method:

A prospective cohort study involving 28 healthy parturients was performed using ICG and echo at three time points and in two maternal positions. Pearson’s correlations, Bland–Altman plots and paired t-tests were used for statistical analysis.

Result:

Significant agreements between many but not all ICG and echo contractility, flow and resistance measurements were demonstrated. Differences in stroke volume (SV) due to maternal position were also detected by ICG in the antepartum (AP) period. Significant trends were observed by ICG for cardiac output and thoracic fluid content (TFC; P<0.025) with advancing pregnancy stages.

Conclusion:

ICG and echo demonstrate significant correlations in some but not all measurements of cardiac function. ICG has the ability to detect small changes in SV associated with maternal position change. ICG measurements reflected maximal cardiac contractility in the a AP period yet reflected a decrease in contractility and an increase in TFC in the postpartum period.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Burlingame J, Horiuchi B, Ohana P, Onaka A, Sauvage LM . The contribution of heart disease to pregnancy-related mortality according to the pregnancy mortality surveillance system. J Perinatol 2012; 32 (3): 163–169.

    Article  CAS  PubMed  Google Scholar 

  2. Whitehead SJ, Berg CJ, Chang J . Pregnancy-related mortality due to cardiomyopathy: United States, 1991-1997. Obstet Gynecol 2003; 102 (6): 1326–1331.

    PubMed  Google Scholar 

  3. Fett JD . Pregnancy-related mortality due to cardiomyopathy: United States, 1991-1997. Obstet Gynecol 2004; 103 (6): 1342 author reply 1343.

    Article  PubMed  Google Scholar 

  4. Berg CJ, Harper MA, Atkinson SM, Bell EA, Brown HL, Hage ML et al. Preventability of pregnancy-related deaths: results of a state-wide review. Obstet Gynecol 2005; 106 (6): 1228–1234.

    Article  PubMed  Google Scholar 

  5. Berg CJ, Chang J, Callaghan WM, Whitehead SJ . Pregnancy-related mortality in the United States, 1991-1997. Obstet Gynecol 2003; 101 (2): 289–296.

    PubMed  Google Scholar 

  6. van Oppen AC, Stigter RH, Bruinse HW . Cardiac output in normal pregnancy: a critical review. Obstet Gynecol 1996; 87 (2): 310–318.

    Article  CAS  PubMed  Google Scholar 

  7. Hennessy TG, MacDonald D, Hennessy MS, Maguire M, Blake S, McCann HA et al. Serial changes in cardiac output during normal pregnancy: a Doppler ultrasound study. Eur J Obstet Ggynecol Rreprod Biol 1996; 70 (2): 117–122.

    Article  CAS  Google Scholar 

  8. Clark SL, Cotton DB, Lee W, Bishop C, Hill T, Southwick J et al. Central hemodynamic assessment of normal term pregnancy. Am J Obstet Gynecol 1989; 161 (6 Pt 1): 1439–1442.

    Article  CAS  PubMed  Google Scholar 

  9. Clapp JF 3rd, Seaward BL, Sleamaker RH, Hiser J . Maternal physiologic adaptations to early human pregnancy. Am J Obstet Gynecol 1988; 159 (6): 1456–1460.

    Article  PubMed  Google Scholar 

  10. Atkins AF, Watt JM, Milan P, Davies P, Crawford JS . A longitudinal study of cardiovascular dynamic changes throughout pregnancy. Eur J Obstet Ggynecol Rreprod Biol 1981; 12 (4): 215–224.

    Article  CAS  Google Scholar 

  11. Ueland K, Metcalfe J . Circulatory changes in pregnancy. Clinical Obstet Gynecol 1975; 18 (3): 41–50.

    Article  CAS  Google Scholar 

  12. Lund CJ, Donovan JC . Blood volume during pregnancy. Significance of plasma and red cell volumes. Am J Obstet Gynecol 1967; 98 (3): 394–403.

    Article  CAS  PubMed  Google Scholar 

  13. Hankins GD, Harvey CJ, Clark SL, Uckan EM, Van Hook JW . The effects of maternal position and cardiac output on intrapulmonary shunt in normal third-trimester pregnancy. Obstet Gynecol 1996; 88 (3): 327–330.

    Article  CAS  PubMed  Google Scholar 

  14. Atkins AJ, Watt JM, Milan P, Davies P, Crawford JS . The influence of posture upon cardiovascular dynamics throughout pregnancy. Eur J Obstet Ggynecol Rreprod Biol 1981; 12 (6): 357–372.

    Article  CAS  Google Scholar 

  15. Kerkkamp HJ, Heethaar RM . A comparison of bioimpedance and echocardiography in measuring systolic heart function in cardiac patients. Ann NY Acad Sci 1999; 873: 149–154.

    Article  CAS  PubMed  Google Scholar 

  16. Albert NM, Hail MD, Li J, Young JB . Equivalence of the bioimpedance and thermodilution methods in measuring cardiac output in hospitalized patients with advanced, decompensated chronic heart failure. Am J Crit Care 2004; 13 (6): 469–479.

    PubMed  Google Scholar 

  17. Drazner MH, Thompson B, Rosenberg PB, Kaiser PA, Boehrer JD, Baldwin BJ et al. Comparison of impedance cardiography with invasive hemodynamic measurements in patients with heart failure secondary to ischemic or nonischemic cardiomyopathy. Am J Cardiol 2002; 89 (8): 993–995.

    Article  PubMed  Google Scholar 

  18. Greenberg BH, Hermann DD, Pranulis MF, Lazio L, Cloutier D . Reproducibility of impedance cardiography hemodynamic measures in clinically stable heart failure patients. Congest Heart Fail 2000; 6 (2): 74–80.

    Article  CAS  PubMed  Google Scholar 

  19. Van De Water JM, Miller TW, Vogel RL, Mount BE, Dalton ML . Impedance cardiography: the next vital sign technology? Chest 2003; 123 (6): 2028–2033.

    Article  PubMed  Google Scholar 

  20. Tang WH, Tong W . Measuring impedance in congestive heart failure: current options and clinical applications. Am Heart J 2009; 157 (3): 402–411.

    Article  PubMed  Google Scholar 

  21. Yancy C, Abraham WT . Noninvasive hemodynamic monitoring in heart failure: utilization of impedance cardiography. Congest Heart Fail 2003; 9 (5): 241–250.

    Article  PubMed  Google Scholar 

  22. Armstrong W, Ryan T . Feigenbaum’s Echocardiography 7th edn. Philadelphia, PA, USA: Lippincott Williams & Wilkins, 2009.

    Google Scholar 

  23. Boudoulas H . Systolic time intervals. Eur Heart J 1990; 11 (Suppl I): 93–104.

    Article  PubMed  Google Scholar 

  24. Mattar JA, Shoemaker WC, Diament D, Lomar A, Lopes AC, De Freitas E et al. Systolic and diastolic time intervals in the critically ill patient. Crit Care Med 1991; 19 (11): 1382–1386.

    Article  CAS  PubMed  Google Scholar 

  25. Ranaei R, Heywood J, Elatre WA . Assessment of contractility and total arterial compliance by impedance cardiography determined parameters. J Card Fail 2002; 8 (4 suppl): S97.

    Google Scholar 

  26. Myhrman P, Granerus G, Karlsson K, Lundgren Y . Cardiac output in normal pregnancy measured by impedance cardiography. Scand J Clin Lab Investig 1982; 42 (6): 513–520.

    Article  CAS  Google Scholar 

  27. Milsom I, Forssman L, Biber B, Dottori O, Sivertsson R . Measurement of cardiac stroke volume during cesarean section: a comparison between impedance cardiography and the dye dilution technique. Acta anaesthesiol Scand 1983; 27 (5): 421–426.

    Article  CAS  PubMed  Google Scholar 

  28. Milsom I, Forssman L, Sivertsson R, Dottori O . Measurement of cardiac stroke volume by impedance cardiography in the last trimester of pregnancy. Acta Obstet Gynecol Scand 1983; 62 (5): 473–479.

    Article  CAS  PubMed  Google Scholar 

  29. de Swiet M, Talbert DG . The measurement of cardiac output by electrical impedance plethysmography in pregnancy. Are the assumptions valid? Br J Obstet Gynaecol 1986; 93 (7): 721–726.

    Article  CAS  PubMed  Google Scholar 

  30. Heethaar RM, van Oppen AC, Ottenhoff FA, Brouwer FA, Bruinse HW . Thoracic electrical bioimpedance: suitable for monitoring stroke volume during pregnancy? Eur J Obstet Gynecol Reprod Biol 1995; 58 (2): 183–190.

    Article  CAS  PubMed  Google Scholar 

  31. San-Frutos LM, Fernandez R, Almagro J, Barbancho C, Salazar F, Perez-Medina T et al. Measure of hemodynamic patterns by thoracic electrical bioimpedance in normal pregnancy and in preeclampsia. Eur J Obstet Gynecol Reprod Biol 2005; 121 (2): 149–153.

    Article  PubMed  Google Scholar 

  32. Scardo JA, Ellings J, Vermillion ST, Chauhan SP . Validation of bioimpedance estimates of cardiac output in preeclampsia. Am J Obstet Gynecol 2000; 183 (4): 911–913.

    Article  CAS  PubMed  Google Scholar 

  33. Masaki DI, Greenspoon JS, Ouzounian JG . Measurement of cardiac output in pregnancy by thoracic electrical bioimpedance and thermodilution. A preliminary report. Am J Obstet Gynecol 1989; 161 (3): 680–684.

    Article  CAS  PubMed  Google Scholar 

  34. Tihtonen KM, Koobi T, Vuolteenaho O, Huhtala HS, Uotila JT . Natriuretic peptides and hemodynamics in preeclampsia. Am J Obstet Gynecol 2007; 196 (4): 328, e321–327.

    Article  Google Scholar 

  35. Tihtonen KM, Koobi T, Uotila JT . Arterial stiffness in preeclamptic and chronic hypertensive pregnancies. Eur J Obstet Gynecol Reprod Biol 2006; 128 (1-2): 180–186.

    Article  PubMed  Google Scholar 

  36. Tihtonen K, Koobi T, Yli-Hankala A, Huhtala H, Uotila J . Maternal haemodynamics in pre-eclampsia compared with normal pregnancy during caesarean delivery. Br J Obstet Gynaecol 2006; 113 (6): 657–663.

    Article  CAS  Google Scholar 

  37. Tihtonen K, Koobi T, Yli-Hankala A, Uotila J . Maternal hemodynamics during cesarean delivery assessed by whole-body impedance cardiography. Acta Obstet Gynecol Scand 2005; 84 (4): 355–361.

    Article  PubMed  Google Scholar 

  38. Tihtonen K, Koobi T, Huhtala H, Uotila J . Hemodynamic adaptation during pregnancy in chronic hypertension. Hypertens Pregnancy 2007; 26 (3): 315–328.

    Article  PubMed  Google Scholar 

  39. Volman MN, Rep A, Kadzinska I, Berkhof J, van Geijn HP, Heethaar RM et al. Haemodynamic changes in the second half of pregnancy: a longitudinal, noninvasive study with thoracic electrical bioimpedance. Br J Obstet Gynaecol 2007; 114 (5): 576–581.

    Article  CAS  Google Scholar 

  40. Newman RB, Pierre H, Scardo J . Thoracic-fluid conductivity in peripartum women with pulmonary edema. Obstet Gynecol 1999; 94 (1): 48–51.

    CAS  PubMed  Google Scholar 

  41. Scardo JA, Vermillion ST, Hogg BB, Newman RB . Hemodynamic effects of oral nifedipine in preeclamptic hypertensive emergencies. Am J Obstet Gynecol 1996; 175 (2): 336–338 discussion 338-340.

    Article  CAS  PubMed  Google Scholar 

  42. Scardo J, Kiser R, Dillon A, Brost B, Newman R . Hemodynamic comparison of mild and severe preeclampsia: concept of stroke systemic vascular resistance index. J Matern Fetal Med 1996; 5 (5): 268–272.

    Article  CAS  PubMed  Google Scholar 

  43. Scardo JA, Hogg BB, Newman RB . Favorable hemodynamic effects of magnesium sulfate in preeclampsia. Am J Obstet Gynecol 1995; 173 (4): 1249–1253.

    Article  CAS  PubMed  Google Scholar 

  44. Clark SL, Southwick J, Pivarnik JM, Cotton DB, Hankins GD, Phelan JP . A comparison of cardiac index in normal term pregnancy using thoracic electrical bio-impedance and oxygen extraction (Fick) techniques. Obstet Gynecol 1994; 83 (5 Pt 1): 669–672.

    CAS  PubMed  Google Scholar 

  45. van Oppen AC, van der Tweel I, Alsbach GP, Heethaar RM, Bruinse HW . A longitudinal study of maternal hemodynamics during normal pregnancy. Obstet Gynecol 1996; 88 (1): 40–46.

    Article  CAS  PubMed  Google Scholar 

  46. Parrott CW, Burnham KM, Quale C, Lewis DL . Comparison of changes in ejection fraction to changes in impedance cardiography cardiac index and systolic time ratio. Congest Heart Fail 2004; 10 (2 Suppl 2): 11–13.

    Article  PubMed  Google Scholar 

  47. Cybulski G, Michalak E, Kozluk E, Piatkowska A, Niewiadomski W . Stroke volume and systolic time intervals: beat-to-beat comparison between echocardiography and ambulatory impedance cardiography in supine and tilted positions. Med Biol Eng Comput 2004; 42 (5): 707–711.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The project described was supported by Award No. U54RR026136 from the National Center for Research Resources (NCRR), National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NCRR, NIH or The Queen’s Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Burlingame.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burlingame, J., Ohana, P., Aaronoff, M. et al. Noninvasive cardiac monitoring in pregnancy: impedance cardiography versus echocardiography. J Perinatol 33, 675–680 (2013). https://doi.org/10.1038/jp.2013.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2013.35

Keywords

This article is cited by

Search

Quick links