Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Long-chain polyunsaturated fatty acid levels in US donor human milk: meeting the needs of premature infants?

Abstract

Objective:

To determine fatty acid levels in the US donor milk supply.

Study Design:

Donor human milk samples from Iowa (n=62), Texas (n=5), North Carolina (n=5) and California (n=5) were analyzed by gas chromatography. Levels in the Iowa donor milk were compared before and after pasteurization using Student's t-test. Docosahexaenoic acid (DHA) and arachidonic acid (ARA) levels were compared among all milk banks using analysis of variance.

Result:

ARA (0.4 pre, 0.4 post, P=0.18) and DHA (0.073 pre, 0.073 post, P=0.84) were not affected by pasteurization. DHA varied between banks (P<0.0001), whereas ARA did not (P=0.3). DHA levels from all banks were lower than published values for maternal milk and infant formula (P<0.0001).

Conclusion:

Pasteurization of breastmilk does not affect DHA or ARA levels. However, DHA content in US donor milk varies with bank location and may not meet the recommended provision for preterm infants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Carlson SE, Neuringer M . Polyunsaturated fatty acid status and neurodevelopment: a summary and critical analysis of the literature. Lipids 1999; 34 (2): 171–178.

    Article  CAS  Google Scholar 

  2. Innis SM . Dietary (n-3) fatty acids and brain development. J Nutr 2007; 137 (4): 855–859.

    Article  CAS  Google Scholar 

  3. Koletzko B, Lien E, Agostoni C, Bohles H, Campoy C, Cetin I et al. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med 2008; 36 (1): 5–14.

    Article  CAS  Google Scholar 

  4. Agostoni C, Marangoni F, Stival G, Gatelli I, Pinto F, Rise P et al. Whole blood fatty acid composition differs in term versus mildly preterm infants: small versus matched appropriate for gestational age. Pediatr Res 2008; 64 (3): 298–302.

    Article  CAS  Google Scholar 

  5. Krabbendam L, Bakker E, Hornstra G, van Os J . Relationship between DHA status at birth and child problem behaviour at 7 years of age. Prostaglandins Leukot Essent Fatty Acids 2007; 76 (1): 29–34.

    Article  CAS  Google Scholar 

  6. Tyson JE, Saigal S . Outcomes for extremely low-birth-weight infants: disappointing news. JAMA 2005; 294 (3): 371–373.

    Article  CAS  Google Scholar 

  7. Rogers LK, Valentine CJ, Pennell M, Velten M, Britt RD, Dingess K et al. Maternal DHA supplementation decreases lung inflammation in hyperoxia-exposed newborn mice. J Nutr 2011; 141 (2): 214–222.

    Article  CAS  Google Scholar 

  8. Joss-Moore LA, Wang Y, Baack ML, Yao J, Norris AW, Yu X et al. IUGR decreases PPARgamma and SETD8 expression in neonatal rat lung and these effects are ameliorated by maternal DHA supplementation. Early Hum Dev 2010; 86 (12): 785–791.

    Article  CAS  Google Scholar 

  9. Crawford MA, Golfetto I, Ghebremeskel K, Min Y, Moodley T, Poston L et al. The potential role for arachidonic and docosahexaenoic acids in protection against some central nervous system injuries in preterm infants. Lipids 2003; 38 (4): 303–315.

    Article  CAS  Google Scholar 

  10. Pawlik D, Lauterbach R, Turyk E . Fish-oil fat emulsion supplementation may reduce the risk of severe retinopathy in VLBW infants. Pediatrics 2011; 127 ((2): 223–228.

    Article  Google Scholar 

  11. SanGiovanni JP, Chew EY . The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 2005; 24 (1): 87–138.

    Article  CAS  Google Scholar 

  12. Reisbick S, Neuringer M, Gohl E, Wald R, Anderson GJ . Visual attention in infant monkeys: effects of dietary fatty acids and age. Dev Psychol 1997; 33 (3): 387–395.

    Article  CAS  Google Scholar 

  13. Hanebutt FL, Demmelmair H, Schiessl B, Larque E, Koletzko B . Long-chain polyunsaturated fatty acid (LC-PUFA) transfer across the placenta. Clin Nutr 2008; 27 (5): 685–693.

    Article  CAS  Google Scholar 

  14. Lapillonne A, Eleni dit Trolli S, Kermorvant-Duchemin E . Postnatal docosahexaenoic acid deficiency is an inevitable consequence of current recommendations and practice in preterm infants. Neonatology 2010; 98 (4): 397–403.

    Article  CAS  Google Scholar 

  15. Carlson SE, Werkman SH . A randomized trial of visual attention of preterm infants fed docosahexaenoic acid until two months. Lipids 1996; 31 (1): 85–90.

    Article  CAS  Google Scholar 

  16. Fewtrell MS, Abbott RA, Kennedy K, Singhal A, Morley R, Caine E et al. Randomized, double-blind trial of long-chain polyunsaturated fatty acid supplementation with fish oil and borage oil in preterm infants. J Pediatr 2004; 144 (4): 471–479.

    Article  CAS  Google Scholar 

  17. Clandinin MT, Van Aerde JE, Merkel KL, Harris CL, Springer MA, Hansen JW et al. Growth and development of preterm infants fed infant formulas containing docosahexaenoic acid and arachidonic acid. J Pediatr 2005; 146 (4): 461–468.

    Article  CAS  Google Scholar 

  18. Makrides M, Gibson RA, McPhee AJ, Collins CT, Davis PG, Doyle LW et al. Neurodevelopmental outcomes of preterm infants fed high-dose docosahexaenoic acid: a randomized controlled trial. JAMA 2009; 301 (2): 175–182.

    Article  CAS  Google Scholar 

  19. Henriksen C, Haugholt K, Lindgren M, Aurvag AK, Ronnestad A, Gronn M et al. Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid. Pediatrics 2008; 121 (6): 1137–1145.

    Article  Google Scholar 

  20. O’Connor DL, Hall R, Adamkin D, Auestad N, Castillo M, Connor WE et al. Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: a prospective, randomized controlled trial. Pediatrics 2001; 108 (2): 359–371.

    Article  Google Scholar 

  21. Heiman H, Schanler RJ . Benefits of maternal and donor human milk for premature infants. Early Hum Dev 2006; 82 (12): 781–787.

    Article  CAS  Google Scholar 

  22. Quigley MA, Henderson G, Anthony MY, McGuire W . Formula milk versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev 2007; (4): CD002971.

  23. Wight NE . Donor human milk for preterm infants. J Perinatol 2001; 21 (4): 249–254.

    Article  CAS  Google Scholar 

  24. Guidelines Committe H. Guidelines for the Establishment and Operation of a Donor Human Milk Bank. J Hum Lact 2010; 24 (1): 49–52.

    Google Scholar 

  25. Lepage . Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 1984; 25: 1391–1396.

    CAS  PubMed  Google Scholar 

  26. Kris-Etherton PM, Innis S . Position of the American Dietetic Association and Dietitians of Canada: dietary fatty acids. J Am Diet Assoc 2007; 107 (9): 1599–1611.

    CAS  PubMed  Google Scholar 

  27. Lapillonne A, Jensen CL . Reevaluation of the DHA requirement for the premature infant. Prostaglandins Leukot Essent Fatty Acids 2009; 81 (2–3): 143–150.

    Article  CAS  Google Scholar 

  28. Henderson TR, Fay TN, Hamosh M . Effect of pasteurization on long chain polyunsaturated fatty acid levels and enzyme activities of human milk. J Pediatr 1998; 132 (5): 876–878.

    Article  CAS  Google Scholar 

  29. Fidler N, Sauerwald TU, Demmelmair H, Koletzko B . Fat content and fatty acid composition of fresh, pasteurized, or sterilized human milk. Adv Exp Med Biol 2001; 501: 485–495.

    Article  CAS  Google Scholar 

  30. Valentine CJ, Morrow G, Fernandez S, Gulati P, Bartholomew D, Long D et al. Docosahexaenoic acid and amino acid contents in pasteurized donor milk are low for preterm infants. J Pediatr 2010; 157 (6): 906–910.

    Article  CAS  Google Scholar 

  31. Koletzko B, Cetin I, Brenna JT . Dietary fat intakes for pregnant and lactating women. Br J Nutr 2007; 98 (5): 873–877.

    Article  CAS  Google Scholar 

  32. Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM . Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr 2007; 85 (6): 1457–1464.

    Article  CAS  Google Scholar 

  33. Smit EN, Muskiet FA, Boersma ER . Docosahexaenoic acid (DHA) status of breastfed malnourished infants and their mothers in North Pakistan. Adv Exp Med Biol 2000; 478: 395–396.

    Article  CAS  Google Scholar 

  34. Koletzko B, Larque E, Demmelmair H . Placental transfer of long-chain polyunsaturated fatty acids (LC-PUFA). J Perinat Med 2007; 35 (Suppl 1): S5–11.

    CAS  PubMed  Google Scholar 

  35. Koletzko B, Sauerwald U, Keicher U, Saule H, Wawatschek S, Bohles H et al. Fatty acid profiles, antioxidant status, and growth of preterm infants fed diets without or with long-chain polyunsaturated fatty acids. A randomized clinical trial. Eur J Nutr 2003; 42 (5): 243–253.

    Article  CAS  Google Scholar 

  36. Agostoni C, Marangoni F, Bernardo L, Lammardo AM, Galli C, Riva E . Long-chain polyunsaturated fatty acids in human milk. Acta Paediatr Suppl 1999; 88 (430): 68–71.

    Article  CAS  Google Scholar 

  37. Heiman H, Schanler RJ . Enteral nutrition for premature infants: the role of human milk. Semin Fetal Neonatal Med 2007; 12 (1): 26–34.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Arthur Spector for his assistance in fatty acid analysis and Dr Patrick Brophy for the use of his laboratory space. Special thanks is extended to Jean Drulis and all the mothers who allowed the study of their milk from The Mother's Milk Bank of Iowa, The Mother's Milk Bank at Austin, WakeMed Mother's Milk Bank and The Mother's Milk Bank in San Jose, California. Financial support for this study was generously provided by the NICHD-K23HD057232 and NIDDK-R01DK081548.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Baack.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baack, M., Norris, A., Yao, J. et al. Long-chain polyunsaturated fatty acid levels in US donor human milk: meeting the needs of premature infants?. J Perinatol 32, 598–603 (2012). https://doi.org/10.1038/jp.2011.152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2011.152

Keywords

This article is cited by

Search

Quick links