Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The relationship between circulating tissue transglutaminase, soluble fms-like tyrosine kinase-1, soluble endoglin and vascular endothelial growth factor in pre-eclampsia

Abstract

Preeclampsia (PE) is a pregnancy-specific syndrome that causes substantial maternal and fetal morbidity and mortality. Increased production of antiangiogenic factors, soluble fms-like tyrosine kinase receptor-1 (sFlt-1) and soluble endoglin (sEng), as well as decreased circulating levels of free vascular endothelial growth factor (VEGF), contribute to the pathophysiology of PE. Our objective was to evaluate a novel placenta-related factor, tissue transglutaminase (tTG), in PE and to investigate the correlation among tTG and sFlt-1, sEng and VEGF levels in both normotensive pregnant patients and PE patients. A total of 205 pregnant primigravid women were recruited and divided into a normotensive group (n=100), a mild PE group (n=45) and a severe PE group (n=60). Circulating serum tTG, sFlt-1, sEng and free VEGF levels were determined using an enzyme-linked immunosorbent assay. The severe PE group showed higher levels of tTG, sFlt-1 and sEng than the mild PE and normotensive groups. Free VEGF levels were lower in the severe PE group than in the mild PE and normotensive groups. tTG correlated significantly with sFlt-1, sEng and VEGF in the PE groups, whereas this correlation was not observed in the normotensive group. The tTG, sFlt-1, sEng and VEGF levels showed a significant correlation with mean arterial pressure in the PE groups but not in the normotensive group. The tTG, sFlt-1, sEng and VEGF levels correlated with the degree of proteinuria. Our results reveal that tTG is associated with sFlt-1, sEng and VEGF in the maternal circulation of PE patients, suggesting that tTG may have a role in the pathogenesis of PE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Sibai B, Dekker G, Kupferminc M . Pre-eclampsia. Lancet 2005; 365: 785–799.

    Article  Google Scholar 

  2. Weinstein L . Syndrome of hemolysis, elevated liver enzymes, and low platelet count: a severe consequence of hypertension in pregnancy. Am J Obstet Gynecol 1982; 142: 159–167.

    Article  CAS  Google Scholar 

  3. Hermes W, Van Kesteren F, De Groot CJ . Preeclampsia and cardiovascular risk. Minerva Ginecol 2012; 64: 281–292.

    CAS  PubMed  Google Scholar 

  4. Moore Simas TA, Crawford SL, Solitro MJ, Frost SC, Meyer BA, Maynard SE . Angiogenic factors for the prediction of preeclampsia in high-risk women. Am J Obstet Gynecol 2007; 197 (3): 244e1–248e.

    Article  Google Scholar 

  5. Hertig A, Liere P . New markers in preeclampsia. Clin Chim Acta 2010; 411 (21–22): 1591–1595.

    Article  CAS  PubMed  Google Scholar 

  6. Remero R, Nien JK, Espinoza J, Todem D, Fu W, Chung H et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble VEGF receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med 2008; 21 (1): 9–23.

    Article  Google Scholar 

  7. Liu C, Wang W, Parchim N, Irani RA, Blackwell SC, Sibai B et al. Tissue transglutaminase contributes to the pathogenesis of preeclampsia and stabilizes placental angiotensin receptor type 1 by ubiquitination-preventing isopeptide modification. Hypertension 2014; 63 (2): 353–361.

    Article  CAS  Google Scholar 

  8. Folk JE . Transglutaminases. Annu Rev Biochem 1980; 49: 517–531.

    Article  CAS  PubMed  Google Scholar 

  9. Greenberg CS, Birckbichler PJ, Rice RH . Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J 1991; 5: 3071–3077.

    Article  CAS  Google Scholar 

  10. Parameswaran KN, Cheng XF, Chen EC, Velasco PT, Wilson JH, Lorand L . Hydrolysis of gamma:epsilon isopeptides by cytosolic transglutaminases and by coagulation factor XIIIa. J Biol Chem 1997; 272: 10311–10317.

    Article  CAS  Google Scholar 

  11. Thomazy V, Fesus L . Different expression of tissue transglutaminase in human cells. Cell Tissue Res 1989; 255: 215–224.

    Article  CAS  Google Scholar 

  12. Hager H, Gliemann J, Hamilton-Dutoit S, Ebbesen P, Koppelhus U, Jensen PH . Developmental regulation of tissue transglutaminase during human placentation and expression in neoplastic trophoblast. J Pathol 1997; 181: 106–110.

    Article  CAS  Google Scholar 

  13. Robinson NJ, Glazier JD, Greenwood SL, Baker PN, Aplin JD . Tissue transglutaminase expression and activity in placenta. Placenta 2006; 27: 148–157.

    Article  CAS  Google Scholar 

  14. Robinson NJ, Baker PN, Jones CJ, Aplin JD . A role for tissue transglutaminase in stabilization of membrane-cytoskeletal particles shed from the human placenta. Biol Reprod 2007; 77: 648–657.

    Article  CAS  Google Scholar 

  15. Kuncio GS, Tsyganskaya M, Zhu J, Liu SL, Nagy L, Thomazy V et al. TNF-alpha modulates expression of the tissue transglutaminase gene in liver cells. Am J Physiol 1998; 274 (2Pt 1): G240–G245.

    CAS  PubMed  Google Scholar 

  16. Suto N, Ikura K, Sasaki R . Expression induced by interleukin-6 of tissue-type transglutaminase in human hepatoblastoma HepG2 cells. J Biol Chem 1993; 268: 7469–7473.

    CAS  PubMed  Google Scholar 

  17. Gundemir S, Colak G, Tucholski J, Johnson GV . Transglutaminase 2: a molecular Swiss army knife. Biochim Biophys Acta 2012; 1823: 406–419.

    Article  CAS  PubMed  Google Scholar 

  18. LaMarca BD, Gilbert J, Granger JP . Recent progress toward the understanding of the pathophysiology of hypertension during preeclampsia. Hypertension 2008; 51: 982–988.

    Article  CAS  PubMed  Google Scholar 

  19. LaMarca BB, Bennett WA, Alexander BT, Cockrell K, Granger JP . Hypertension produced by reductions in uterine perfusion in the pregnant rat: role of tumor necrosis factor-alpha. Hypertension 2005; 46: 1022–1025.

    Article  CAS  PubMed  Google Scholar 

  20. Gadonski G, LaMarca BB, Sullivan E, Bennett W, Chandler D, Granger JP . Hypertension produced by reductions in uterine perfusion in the pregnant rat: role of interleukin 6. Hypertension 2006; 48: 711–716.

    Article  CAS  Google Scholar 

  21. LaMarca BD, Ryan MJ, Gilbert JS, Murphy SR, Granger JP . Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr Hypertens Rep 2007; 9: 480–485.

    Article  CAS  Google Scholar 

  22. Kendall RL, Wang G, Thomas KA . Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 1996; 226 (2): 324–328.

    Article  CAS  Google Scholar 

  23. Shibuya M . Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct Funct 2001; 26: 25–35.

    Article  CAS  Google Scholar 

  24. He Y, Smith SK, Day KA, Clark DE, Licence DR, Charnock-Jones DS . Alternative splicing of vascular endothelial growth factor (VEGF)-R1 (FLT-1) pre-mRNA is important for the regulation of VEGF activity. Mol Endocrinol 1999; 13: 537–545.

    Article  CAS  Google Scholar 

  25. Clark DE, Smith SK, He Y, Day KA, Licence DR, Corps AN et al. A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biol Reprod 1998; 59: 1540–1548.

    Article  CAS  Google Scholar 

  26. Hassan MF, Rund NM, Salama AH . An elevated maternal plasma soluble fms-like tyrosine kinase-1 to placental growth factor ratio at midtrimester is a useful predictor for preeclampsia. Obstet Gynecol Int 2013; 2013: 202346.

    Article  PubMed  Google Scholar 

  27. Hanita O, Alia NN, Zaleha AM, Nor Azlin MI . Serum soluble FMS-like tyrosine kinase 1 and placental growth factor concentration as predictors of preeclampsia in high risk pregnant women. Malays J Pathol 2014; 36 (1): 19–26.

    CAS  Google Scholar 

  28. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S et al. Excess placental soluble fms-like tyrosine kinase 1(sFlt-1) may contribute to endothelial dysfunction,hypertension,and proteinuria in preeclampsia. J Clin Invest 2003; 111: 649–658.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou CC, Zhang Y, Irani RA, Zhang H, Mi T, Popek EJ et al. Angiotensin receptor agonistic autoantibodies induce preeclampsia in pregnant mice. Nat Med 2008; 14: 855–862.

    Article  CAS  PubMed  Google Scholar 

  30. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 2006; 12: 642–649.

    Article  CAS  Google Scholar 

  31. Morbidelli L, Chang CH, Douglas JG, Granger HJ, Ledda F, Ziche M et al. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Physiol 1996; 270: H411–H415.

    Article  CAS  PubMed  Google Scholar 

  32. He H, Venema VJ, Gu X, Venema RC, Marrero MB, Caldwell RB . Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J Biol Chem 1999; 274: 25130–25135.

    Article  CAS  PubMed  Google Scholar 

  33. Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 2006; 355: 992–1005.

    Article  CAS  Google Scholar 

  34. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350: 672–683.

    Article  CAS  PubMed  Google Scholar 

  35. Livingston JC, Chin R, Haddad B, McKinney ET, Ahokas R, Sibai BM . Reductions of vascular endothelial growth factor and placental growth factor concentrations in severe preeclampsia. Am J Obstet Gynecol 2000; 183: 1554–1557.

    Article  CAS  Google Scholar 

  36. Hager H, Gliemann J, Hamilton-Dutoit S, Ebbesen P, Koppelhus U, Henning Jensen P . Developmental regulation of tissue transglutaminase during human placentation and expression in neoplastic trophoblast. J Pathol 1997; 181 (1): 106–110.

    Article  CAS  Google Scholar 

  37. Kabir-Salmani M, Shiokawa S, Akimoto Y, Sakai K, Iwashita M . Tissue transglutaminase at embryo-maternal interface. J Clin Endocrinol Metab 2005; 90 (8): 4694–4702.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Guangzhou Medical College and Guangzhou Women and Children’s Medical Center for providing support and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P He.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., He, P. & Fu, J. The relationship between circulating tissue transglutaminase, soluble fms-like tyrosine kinase-1, soluble endoglin and vascular endothelial growth factor in pre-eclampsia. J Hum Hypertens 30, 788–793 (2016). https://doi.org/10.1038/jhh.2016.32

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2016.32

This article is cited by

Search

Quick links