Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The emerging role of non-coding RNA in essential hypertension and blood pressure regulation

Subjects

Abstract

Unravelling the complete genetic predisposition to high blood pressure (BP) has proven to be challenging. This puzzle and the fact that coding regions of the genome account for less than 2% of the entire human DNA support the hypothesis that genetic mechanism besides coding genes are likely to contribute to BP regulation. Non-coding RNAs (ncRNAs) are emerging as key players of transcription regulation in both health and disease states. They control basic functions in virtually all cell types relevant to the cardiovascular system and, thus, a direct involvement with BP regulation is highly probable. Here, we review the literature about ncRNAs associated with human BP and essential hypertension, highlighting investigations, methodology and difficulties arising in the field. The most investigated ncRNAs so far are microRNAs (miRNAs), small ncRNAs that modulate gene expression by posttranscriptional mechanisms. We discuss studies that have examined miRNAs associated with BP in biological fluids, such as blood and urine, and tissues, such as vascular smooth muscle cells and the kidney. Furthermore, we review the interaction between miRNA binding sites and single nucleotide polymorphisms in genes associated with BP. In conclusion, there is a clear need for more human and functional studies to help elucidate the multifaceted roles of ncRNAs, in particular mid- and long ncRNAs in BP regulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Munroe PB, Barnes MR, Caulfield MJ . Advances in blood pressure genomics. Circ Res 2013; 112 (10): 1365–1379.

    Article  CAS  Google Scholar 

  2. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011; 478 (7367): 103–109.

    Article  CAS  Google Scholar 

  3. Mattick JS . Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2001; 2 (11): 986–991.

    Article  CAS  Google Scholar 

  4. Frith MC, Pheasant M, Mattick JS . The amazing complexity of the human transcriptome. Eur J Hum Genet 2005; 13 (8): 894–897.

    Article  CAS  Google Scholar 

  5. Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternberg SM, Margulies EH et al. Comparative analyses of multi-species sequences from targeted genomic regions. Nature 2003; 424 (6950): 788–793.

    Article  CAS  Google Scholar 

  6. Esteller M . Non-coding RNAs in human disease. Nat Rev Genet 2011; 12 (12): 861–874.

    Article  CAS  Google Scholar 

  7. Pasquinelli AE . MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 2012; 13 (4): 271–282.

    Article  CAS  Google Scholar 

  8. Da Sacco L, Masotti A . Recent insights and novel bioinformatics tools to understand the role of microRNAs binding to 5' untranslated region. Int J Mol Sci 2012; 14 (1): 480–495.

    Article  Google Scholar 

  9. Kozomara A, Griffiths-Jones S . miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014; 42, Database issue D68–D73.

    Article  CAS  Google Scholar 

  10. Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M . Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res 2012; 93 (4): 555–562.

    Article  CAS  Google Scholar 

  11. Tijsen AJ, Pinto YM, Creemers EE . Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol 2012; 303 (9): H1085–H1095.

    Article  CAS  Google Scholar 

  12. Eisenberg E, Levanon EY . Human housekeeping genes, revisited. Trends Genet 2013; 29 (10): 569–574.

    Article  CAS  Google Scholar 

  13. Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 2011; 124 (2): 175–184.

    Article  CAS  Google Scholar 

  14. Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SL, Wong MT et al. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 2012; 97 (12): E2271–E2276.

    Article  CAS  Google Scholar 

  15. Gu Q, Wang B, Zhang XF, Ma YP, Liu JD, Wang XZ . Contribution of renin-angiotensin system to exercise-induced attenuation of aortic remodeling and improvement of endothelial function in spontaneously hypertensive rats. Cardiovasc Pathol 2014; 23 (5): 298–305.

    Article  CAS  Google Scholar 

  16. Penzkofer D, Bonauer A, Fischer A, Tups A, Brandes RP, Zeiher AM et al. Phenotypic characterization of miR-92a−/− mice reveals an important function of miR-92a in skeletal development. PLoS ONE 2014; 9 (6): e101153.

    Article  Google Scholar 

  17. Gildea JJ, Carlson JM, Schoeffel CD, Carey RM, Felder RA . Urinary exosome miRNome analysis and its applications to salt sensitivity of blood pressure. Clin Biochem 2013; 46 (12): 1131–1134.

    Article  CAS  Google Scholar 

  18. Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE . Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension. J Hum Hypertens 2014; 28 (8): 510–516.

    Article  CAS  Google Scholar 

  19. Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE . MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. J Am Soc Hypertens 2014; 8 (6): 368–375.

    Article  CAS  Google Scholar 

  20. Mandraffino G, Imbalzano E, Sardo MA, D'Ascola A, Mamone F, Lo Gullo A et al. Circulating progenitor cells in hypertensive patients with different degrees of cardiovascular involvement. J Hum Hypertens 2014; 28 (9): 543–550 in press.

    Article  CAS  Google Scholar 

  21. Williams Z, Ben-Dov IZ, Elias R, Mihailovic A, Brown M, Rosenwaks Z et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci USA 2013; 110 (11): 4255–4260.

    Article  CAS  Google Scholar 

  22. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 2013; 10 (10): 1003–1005.

    Article  CAS  Google Scholar 

  23. Marques FZ, Campain AE, Tomaszewski M, Yang YHJ, Zukowska-Sczechowska E, Charchar FJ et al. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension 2011; 58: 1093–1098.

    Article  CAS  Google Scholar 

  24. Tomaszewski M, Charchar FJ, Lynch MD, Padmanabhan S, Wang WY, Miller WH et al. Fibroblast growth factor 1 gene and hypertension: from the quantitative trait locus to positional analysis. Circulation 2007; 116 (17): 1915–1924.

    Article  CAS  Google Scholar 

  25. Tomaszewski M, Charchar FJ, Nelson CP, Barnes T, Denniff M, Kaiser M et al. Pathway analysis shows association between FGFBP1 and hypertension. Journal of the American Society of Nephrology: JASN 2011; 22 (5): 947–955.

    Article  CAS  Google Scholar 

  26. Davern PJ, Nguyen-Huu TP, La Greca L, Abdelkader A, Head GA . Role of the sympathetic nervous system in Schlager genetically hypertensive mice. Hypertension 2009; 54 (4): 852–859.

    Article  CAS  Google Scholar 

  27. Jackson KL, Marques FZ, Watson AM, Palma-Rigo K, Nguyen-Huu TP, Morris BJ et al. A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice. Hypertension 2013; 62 (4): 775–781.

    Article  CAS  Google Scholar 

  28. Eskildsen TV, Jeppesen PL, Schneider M, Nossent AY, Sandberg MB, Hansen PB et al. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci 2013; 14 (6): 11190–11207.

    Article  Google Scholar 

  29. Santovito D, Mandolini C, Marcantonio P, De Nardis V, Bucci M, Paganelli C et al. Overexpression of microRNA-145 in atherosclerotic plaques from hypertensive patients. Expert Opin Ther Targets 2013; 17 (3): 217–223.

    Article  CAS  Google Scholar 

  30. Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 2007; 81 (2): 405–413.

    Article  CAS  Google Scholar 

  31. Ceolotto G, Papparella I, Bortoluzzi A, Strapazzon G, Ragazzo F, Bratti P et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens 2011; 24 (2): 241–246.

    Article  CAS  Google Scholar 

  32. Elton TS, Sansom SE, Martin MM . Cardiovascular disease, single nucleotide polymorphisms, and the renin angiotensin system: is there a microRNA connection? Int J Hypertens 2010; 2010 (2010): 281692.

    PubMed  PubMed Central  Google Scholar 

  33. Nossent AY, Hansen JL, Doggen C, Quax PH, Sheikh SP, Rosendaal FR . SNPs in microRNA binding sites in 3'-UTRs of RAAS genes influence arterial blood pressure and risk of myocardial infarction. Am J Hypertens 2011; 24 (9): 999–1006.

    Article  Google Scholar 

  34. Yang Z, Venardos K, Jones E, Morris BJ, Chin-Dusting J, Kaye DM . Identification of a novel polymorphism in the 3'UTR of the L-arginine transporter gene SLC7A1: contribution to hypertension and endothelial dysfunction. Circulation 2007; 115 (10): 1269–1274.

    Article  CAS  Google Scholar 

  35. Yang Z, Kaye DM . Mechanistic insights into the link between a polymorphism of the 3'UTR of the SLC7A1 gene and hypertension. Hum Mutat 2009; 30 (3): 328–333.

    Article  Google Scholar 

  36. Wang L, Rao F, Zhang K, Mahata M, Rodriguez-Flores JL, Fung MM et al. Neuropeptide Y(1) Receptor NPY1R discovery of naturally occurring human genetic variants governing gene expression in cella as well as pleiotropic effects on autonomic activity and blood pressure in vivo. J Am Coll Cardiol 2009; 54 (10): 944–954.

    Article  CAS  Google Scholar 

  37. O'Connor DT, Zhu G, Rao F, Taupenot L, Fung MM, Das M et al. Heritability and genome-wide linkage in US and Australian twins identify novel genomic regions controlling chromogranin a: implications for secretion and blood pressure. Circulation 2008; 118 (3): 247–257.

    Article  CAS  Google Scholar 

  38. Wei Z, Biswas N, Wang L, Courel M, Zhang K, Soler-Jover A et al. A common genetic variant in the 3'-UTR of vacuolar H+-ATPase ATP6V0A1 creates a microRNA motif to alter chromogranin A processing and hypertension risk. Circ Cardiovasc Genet 2011; 4 (4): 381–389.

    Article  CAS  Google Scholar 

  39. Arora P, Wu C, Khan AM, Bloch DB, Davis-Dusenbery BN, Ghorbani A et al. Atrial natriuretic peptide is negatively regulated by microRNA-425. J Clin Invest 2013; 123 (8): 3378–3382.

    Article  CAS  Google Scholar 

  40. Hanin G, Shenhar-Tsarfaty S, Yayon N, Hoe YY, Bennett ER, Sklan EH et al. Competing targets of microRNA-608 affect anxiety and hypertension. Hum Mol Genet 2014; 23 (17): 4569–4580.

    Article  CAS  Google Scholar 

  41. Fu X, Guo L, Jiang ZM, Zhao LS, Xu AG . An miR-143 promoter variant associated with essential hypertension. Int J Clin Exp Med 2014; 7 (7): 1813–1817.

    PubMed  PubMed Central  Google Scholar 

  42. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495 (7441): 333–338.

    Article  CAS  Google Scholar 

  43. Leung A, Trac C, Jin W, Lanting L, Akbany A, Saetrom P et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res 2013; 113 (3): 266–278.

    Article  CAS  Google Scholar 

  44. Hirt MN, Hansen A, Eschenhagen T . Cardiac tissue engineering: state of the art. Circ Res 2014; 114 (2): 354–367.

    Article  CAS  Google Scholar 

  45. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495 (7441): 384–388.

    Article  CAS  Google Scholar 

  46. Juan L, Wang G, Radovich M, Schneider BP, Clare SE, Wang Y et al. Potential roles of microRNAs in regulating long intergenic noncoding RNAs. BMC Med Genomics 2013; 6 (Suppl 1): S7.

    Article  Google Scholar 

  47. Friese RS, Altshuler AE, Zhang K, Miramontes-Gonzalez JP, Hightower CM, Jirout ML et al. MicroRNA-22 and promoter motif polymorphisms at the Chga locus in genetic hypertension: functional and therapeutic implications for gene expression and the pathogenesis of hypertension. Hum Mol Genet 2013; 22 (18): 3624–3640.

    Article  CAS  Google Scholar 

  48. Sahu BS, Sonawane PJ, Mahapatra NR ., Chromogranin A . a novel susceptibility gene for essential hypertension. Cell Mol Life Sci 2010; 67 (6): 861–874.

    Article  CAS  Google Scholar 

  49. Wahlquist C, Jeong D, Rojas-Munoz A, Kho C, Lee A, Mitsuyama S et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 2014; 508 (7497): 531–535.

    Article  CAS  Google Scholar 

  50. Iaconetti C, Gareri C, Polimeni A, Indolfi C . Non-coding RNAs: the "dark matter" of cardiovascular pathophysiology. Int J Mol Sci 2013; 14 (10): 19987–20018.

    Article  Google Scholar 

  51. Gupta SK, Piccoli MT, Thum T . Non-coding RNAs in cardiovascular ageing. Ageing Res Rev 2014; 17C: 79–85.

    Article  Google Scholar 

Download references

Acknowledgements

FZM and FJC are supported by grants from the National Health & Medical Research Council of Australia (NHMRC), the National Heart Foundation and the Federation University Australia 'Self-sustaining Regions Research and Innovation Initiative', an Australian Government Collaborative Research Network (CRN). FZM is supported by NHMRC (APP1052659) and National Heart Foundation (PF12M6785) co-shared Early Career Fellowships. SAB is supported by an Australian Postgraduate Award scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F J Charchar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, F., Booth, S. & Charchar, F. The emerging role of non-coding RNA in essential hypertension and blood pressure regulation. J Hum Hypertens 29, 459–467 (2015). https://doi.org/10.1038/jhh.2014.99

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2014.99

This article is cited by

Search

Quick links