Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effects of established blood pressure loci on blood pressure values and hypertension risk in an Algerian population sample

Subjects

Abstract

Genome-wide association studies and subsequent replication studies have pinpointed 29 genetic variants associated with blood pressure (BP). None of these studies included North African populations. We therefore looked at whether or not these genetic variants modulated BP and hypertension (HTN) risk in an Algerian population sample. Twenty-nine single-nucleotide polymorphisms (SNPs) were genotyped in a representative sample of 787 subjects from the InSulino-résistance à ORan (ISOR) study (378 men and 409 women aged between 30 and 64 years and recruited from within the city of Oran, Algeria). Genetic variants were considered both individually and when combined as genetic predisposition scores (GPSs) for systolic BP (SBP), diastolic BP (DBP) and HTN risk. The SNPs in CYP1A1-ULK3, HFE and SH2B3 were significantly associated with BP and/or HTN. The SBP-GPS, DBP-GPS and HTN-GPS were associated with higher levels of DBP (+0.24 mm Hg P=0.05, +0.23 mm Hg P=0.05 and +0.26 mm Hg P=0.03, respectively). Moreover, the three GPSs tended to be associated with a 6% higher risk of HTN. Our study is the first to show that some of the BP loci validated in subjects of European descent were associated (either individually or when combined as GPSs) with BP traits and/or the HTN risk in an Algerian population, but to a lesser extent than in European populations. Although larger studies and meta-analyses of North African populations are needed to confirm the present results, our data contribute to a better understanding of genetic susceptibility to HTN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wolf-Maier K, Cooper RS, Banegas JR, Giampaoli S, Hense HW, Joffres M et al. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA 2003; 289: 2363–2369.

    Article  Google Scholar 

  2. World Health Organization World Health Report Mental Health: New Understanding, New Hope. WHO: Geneva, Switzerland, 2001, 144–149.

  3. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R . Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–1913.

    Article  Google Scholar 

  4. Whelton PK . Hypertension curriculum review: epidemiology and the prevention of hypertension. J Clin Hypertens 2004; 6: 636–642.

    Article  Google Scholar 

  5. Wolf-Maier K, Cooper RS, Kramer H, Banegas JR, Giampaoli S, Joffres MR et al. Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension 2004; 43: 10–17.

    Article  CAS  Google Scholar 

  6. Guidelines Committee. European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003; 21: 1011–1053.

    Article  Google Scholar 

  7. Albert CM, Chae CU, Grodstein F, Rose LM, Rexrode KM, Ruskin JN et al. Prospective study of sudden cardiac death among women in the United States. Circulation 2003; 107: 2096–2101.

    Article  Google Scholar 

  8. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J . Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365: 217–223.

    Article  Google Scholar 

  9. Chockalingam A, Campbell NR, Fodor JG . Worldwide epidemic of hypertension. Can J Cardiol 2006; 22: 553–555.

    Article  Google Scholar 

  10. WHO. New data highlight increases in hypertension, diabetes incidence. Int J Health Care Qual 2012; 25.

  11. TAHINA, Projet I-M-T. Synthèse Enquête Mortalité. Institut National de la Santé Publique: Alger, Algeria, 2005.

  12. Levy D, DeStefano AL, Larson MG, O'Donnell CJ, Lifton RP, Gavras H et al. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study. Hypertension 2000; 36: 477–483.

    Article  CAS  Google Scholar 

  13. Ehret GB . Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr Hypertens Rep 2010; 12: 17–25.

    Article  Google Scholar 

  14. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 2009; 41: 666–676.

    Article  CAS  Google Scholar 

  15. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A et al. Genome-wide association study of blood pressure and hypertension. Nat Genet 2009; 41: 677–687.

    Article  CAS  Google Scholar 

  16. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011; 478: 103–109.

    Article  CAS  Google Scholar 

  17. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G et al. Replicating genotype-phenotype associations. Nature 2007; 447: 655–660.

    Article  CAS  Google Scholar 

  18. Tobin MD, Sheehan NA, Scurrah KJ, Burton PR . Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat Med 2005; 24: 2911–2935.

    Article  Google Scholar 

  19. The sixth report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Arch Intern Med 1997; 157: 2413–2446.

  20. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR et al. Sugar-sweetened beverages and genetic risk of obesity. New Engl J Med 2012; 367: 1387–1396.

    Article  CAS  Google Scholar 

  21. Hong KW, Go MJ, Jin HS, Lim JE, Lee JY, Han BG et al. Genetic variations in ATP2B1, CSK, ARSG and CSMD1 loci are related to blood pressure and/or hypertension in two Korean cohorts. J Hum Hypertens 2010; 24: 367–372.

    Article  CAS  Google Scholar 

  22. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet 2011; 43: 531–538.

    Article  CAS  Google Scholar 

  23. Fox ER, Young JH, Li Y, Dreisbach AW, Keating BJ, Musani SK et al. Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study. Hum Mol Genet 2011; 20: 2273–2284.

    Article  CAS  Google Scholar 

  24. Ganesh SK, Tragante V, Guo W, Guo Y, Lanktree MB, Smith EN et al. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum Mol Genet 2013; 22: 1663–1678.

    Article  CAS  Google Scholar 

  25. Ibrahim MM, Rizk H, Appel LJ, el Aroussy W, Helmy S, Sharaf Y . Hypertension prevalence, awareness, treatment, and control in Egypt. Results from the Egyptian National Hypertension Project (NHP). NHP investigative team. Hypertension 1995; 26: 886–890.

    Article  CAS  Google Scholar 

  26. Ben Romdhane H, Ben Ali S, Skhiri H, Traissac P, Bougatef S, Maire B . Hypertension among Tunisian adults: results of the TAHINA project. Hypertens Res 2012; 35: 341–347.

    Article  Google Scholar 

  27. Al-Nozha MM, Abdullah M, Arafah MR, Khalil MZ, Khan NB, Al-Mazrou YY . Hypertension in Saudi Arabia. Saudi Med J 2007; 28: 77–84.

    PubMed  Google Scholar 

  28. Rampal L, Rampal S, Azhar MZ, Rahman AR . Prevalence, awareness, treatment and control of hypertension in Malaysia: a national study of 16440 subjects. Public Health 2008; 122: 11–18.

    Article  CAS  Google Scholar 

  29. Mittal BV, Singh AK . Hypertension in the developing world: challenges and opportunities. Am J Kidney Dis 2010; 55: 590–598.

    Article  Google Scholar 

  30. Mounier-Vehier C, Amah G, Covillard J . Prise en charge de l'HTA essentielle et du niveau de risque cardiovasculaire: Enquête nationale PHENOMEN. Arch Mal Coeur Vaiss 2002; 95: 667–672.

    CAS  PubMed  Google Scholar 

  31. Jaiswal AK, Gonzalez FJ, Nebert DW . Human dioxin-inducible cytochrome P1-450: complementary DNA and amino acid sequence. Science 1985; 228: 80–83.

    Article  CAS  Google Scholar 

  32. Nebert DW, Dalton TP . The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 2006; 6: 947–960.

    Article  CAS  Google Scholar 

  33. Fitau J, Boulday G, Coulon F, Quillard T, Charreau B . The adaptor molecule Lnk negatively regulates tumor necrosis factor-alpha-dependent VCAM-1 expression in endothelial cells through inhibition of the ERK1 and -2 pathways. J Biol Chem 2006; 281: 20148–20159.

    Article  CAS  Google Scholar 

  34. Velazquez L, Cheng AM, Fleming HE, Furlonger C, Vesely S, Bernstein A et al. Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J Exp Med 2002; 195: 1599–1611.

    Article  CAS  Google Scholar 

  35. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996; 13: 399–408.

    Article  CAS  Google Scholar 

  36. Wu Y, Huxley R, Li L, Anna V, Xie G, Yao C . Prevalence, awareness, treatment, and control of hypertension in China: data from the China National Nutrition and Health Survey 2002. Circulation 2008; 118: 2679–2686.

    Article  Google Scholar 

  37. Wain LV, Verwoert CG, O’Reilly PF, Shi G, Johnson T, Johnson AD et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet 2011; 10: 1005–1012.

    Article  Google Scholar 

  38. Havulinna AS, Kettunen J, Ukkola O, Osmond C, Eriksson JG, Kesäniemi YA et al. A blood pressure genetic risk score is a significant predictor of incident cardiovascular events in 32,669 individuals. Hypertension 2013; 61: 987–994.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The ISOR project was funded through a collaboration agreement between the Direction de la Post-Graduation et de la Recherche-Formation (Algeria) and the Institut National de la Santé et de la Recherche Médicale (INSERM) (France). The work in France was also part-funded by INSERM. The work in Algeria was also part-funded by the Agence Thématique de Recherche en Sciences de la Santé and a grant from the Projets Nationaux de Recherche program run by the Algerian Direction Générale de la Recherche Scientifique et du Développement Technologique/Ministère de l’Enseignement Supérieur et de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Meirhaeghe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lardjam-Hetraf, S., Mediene-Benchekor, S., Ouhaibi-Djellouli, H. et al. Effects of established blood pressure loci on blood pressure values and hypertension risk in an Algerian population sample. J Hum Hypertens 29, 296–302 (2015). https://doi.org/10.1038/jhh.2014.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2014.81

Search

Quick links