Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CYP3A5 polymorphism, amlodipine and hypertension

Abstract

As a major cardiovascular risk factor for stroke, coronary artery disease, heart failure and end-stage renal disease, hypertension affects approximately one billion people and causes large economic burden worldwide. Cytochrome P450 3A5 (CYP3A5), belonging to the CYP3A subfamily, has been implicated in the regulation of blood pressure and may serve as a potential risk factor for the development of hypertension. Increased CYP3A5 activity could cause sodium and water retention by affecting the metabolism of cortisol in the kidneys. Furthermore, polymorphic CYP3A5 genotypes have been shown to cause differences in blood pressure response to antihypertensive drugs. Several studies have investigated the role of CYP3A5 in blood pressure response to amlodipine. However, recent data on the role of CYP3A5 in hypertension development and treatment are inconsistent. This review summarizes what is known regarding the relationship of CYP3A5 with hypertension, discusses the limitations in present studies, highlights the gaps and directs research to this field.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2

References

  1. Timberlake DS, O'Connor DT, Parmer RJ . Molecular genetics of essential hypertension: recent results and emerging strategies. Curr Opin Nephrol Hypertens 2001; 10: 71–79.

    Article  CAS  Google Scholar 

  2. Puddu P, Puddu GM, Cravero E, Ferrari E, Muscari A . The genetic basis of essential hypertension. Acta Cardiol 2007; 62: 281–293.

    Article  Google Scholar 

  3. Agarwal A, Williams GH, Fisher ND . Genetics of human hypertension. Trends Endocrinol Metab 2005; 16: 127–133.

    Article  CAS  Google Scholar 

  4. Binder A . A review of the genetics of essential hypertension. Curr Opin Cardiol 2007; 22: 176–184.

    Article  Google Scholar 

  5. Franceschini N, Reiner AP, Heiss G . Recent findings in the genetics of blood pressure and hypertension traits. Am J Hypertens 2011; 24: 392–400.

    Article  Google Scholar 

  6. Tanira MO, Al Balushi KA . Genetic variations related to hypertension: a review. J Hum Hypertens 2005; 19: 7–19.

    Article  CAS  Google Scholar 

  7. Ehret GB . Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr Hypertens Rep 2010; 12: 17–25.

    Article  Google Scholar 

  8. Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62: 162–172.

    Article  CAS  Google Scholar 

  9. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11: 773–779.

    Article  CAS  Google Scholar 

  10. Haehner BD, Gorski JC, Vandenbranden M, Wrighton SA, Janardan SK, Watkins PB et al. Bimodal distribution of renal cytochrome P450 3A activity in humans. Mol Pharmacol 1996; 50: 52–59.

    CAS  Google Scholar 

  11. Koch I, Weil R, Wolbold R, Brockmoller J, Hustert E, Burk O et al. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos 2002; 30: 1108–1114.

    Article  CAS  Google Scholar 

  12. Givens RC, Lin YS, Dowling AL, Thummel KE, Lamba JK, Schuetz EG et al. CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J Appl Physiol 2003; 95: 1297–1300.

    Article  CAS  Google Scholar 

  13. Lamba JK, Lin YS, Schuetz EG, Thummel KE . Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54: 1271–1294.

    Article  CAS  Google Scholar 

  14. Xie HG, Wood AJ, Kim RB, Stein CM, Wilkinson GR . Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004; 5: 243–272.

    Article  CAS  Google Scholar 

  15. Ho H, Pinto A, Hall SD, Flockhart DA, Li L, Skaar TC et al. Association between the CYP3A5 genotype and blood pressure. Hypertension 2005; 45: 294–298.

    Article  CAS  Google Scholar 

  16. Kivisto KT, Niemi M, Schaeffeler E, Pitkala K, Tilvis R, Fromm MF et al. CYP3A5 genotype is associated with diagnosis of hypertension in elderly patients: data from the DEBATE study. Am J Pharmacogenomics 2005; 5: 191–195.

    Article  Google Scholar 

  17. Zhang L, Miyaki K, Wang W, Muramatsu M . CYP3A5 polymorphism and sensitivity of blood pressure to dietary salt in Japanese men. J Hum Hypertens 2010; 24: 345–350.

    Article  CAS  Google Scholar 

  18. Hunt CM, Watkins PB, Saenger P, Stave GM, Barlascini N, Watlington CO et al. Heterogeneity of CYP3A isoforms metabolizing erythromycin and cortisol. Clin Pharmacol Ther 1992; 51: 18–23.

    Article  CAS  Google Scholar 

  19. Ghosh S, Grogan WM, Basu A, Watlington C . Renal corticosterone 6 beta-hydroxylase in the spontaneously hypertensive rat. Biochim Biophys Acta 1993; 1182: 152–156.

    Article  CAS  Google Scholar 

  20. Ghosh SS, Basu AK, Ghosh S, Hagley R, Kramer L, Schuetz J et al. Renal and hepatic family 3A cytochromes P450 (CYP3A) in spontaneously hypertensive rats. Biochem Pharmacol 1995; 50: 49–54.

    Article  CAS  Google Scholar 

  21. Watlington CO, Kramer LB, Schuetz EG, Zilai J, Grogan WM, Guzelian P et al. Corticosterone 6 beta-hydroxylation correlates with blood pressure in spontaneously hypertensive rats. Am J Physiol 1992; 262: F927–F931.

    Article  CAS  Google Scholar 

  22. Burk O, Wojnowski L . Cytochrome P450 3A and their regulation. Naunyn Schmiedebergs Arch. Pharmacol 2004; 369: 105–124.

    Article  CAS  Google Scholar 

  23. Eichelbaum M, Burk O . CYP3A genetics in drug metabolism. Nat Med 2001; 7: 285–287.

    Article  CAS  Google Scholar 

  24. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383–391.

    Article  CAS  Google Scholar 

  25. Wojnowski L . Genetics of the variable expression of CYP3A in humans. Ther Drug Monit 2004; 26: 192–199.

    Article  CAS  Google Scholar 

  26. Bolbrinker J, Seeberg S, Schostak M, Kempkensteffen C, Baelde H, de Heer E et al. CYP3A5 genotype-phenotype analysis in the human kidney reveals a strong site-specific expression of CYP3A5 in the proximal tubule in carriers of the CYP3A5*1 allele. Drug Metab Dispos 2012; 40: 639–641.

    Article  CAS  Google Scholar 

  27. Cai J, Huang Z, Yang G, Cheng K, Ye Q, Ming Y et al. Comparing antihypertensive effect and plasma ciclosporin concentration between amlodipine and valsartan regimens in hypertensive renal transplant patients receiving ciclosporin therapy. Am J Cardiovasc Drugs 2011; 11: 401–409.

    Article  CAS  Google Scholar 

  28. Park KW, Kang J, Park JJ, Yang HM, Lee HY, Kang HJ et al. Amlodipine, clopidogrel and CYP3A5 genetic variability: effects on platelet reactivity and clinical outcomes after percutaneous coronary intervention. Heart 2012; 98: 1366–1372.

    Article  CAS  Google Scholar 

  29. Thompson EE, Kuttab-Boulos H, Witonsky D, Yang L, Roe BA, Di RA . CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet 2004; 75: 1059–1069.

    Article  CAS  Google Scholar 

  30. Duncan RL, Grogan WM, Kramer LB, Watlington CO . Corticosterone's metabolite is an agonist for Na+ transport stimulation in A6 cells. Am J Physiol 1988; 255: F736–F748.

    CAS  PubMed  Google Scholar 

  31. Matsuzaki K, Arai T, Miyazaki T, Yasuda K . Formation of 6 beta-OH-deoxycorticosterone from deoxycorticosterone by A6 cells. Steroids 1995; 60: 457–462.

    Article  CAS  Google Scholar 

  32. Lieb W, Bolbrinker J, Doring A, Hense HW, Erdmann J, Schunkert H et al. No association of the CYP3A5*1 allele with blood pressure and left ventricular mass and geometry: the KORA/MONICA Augsburg echocardiographic substudy. Clin Sci (Lond) 2006; 111: 365–372.

    Article  CAS  Google Scholar 

  33. Fromm MF, Schmidt BM, Pahl A, Jacobi J, Schmieder RE . CYP3A5 genotype is associated with elevated blood pressure. Pharmacogenet Genomics 2005; 15: 737–741.

    Article  CAS  Google Scholar 

  34. Kreutz R, Zuurman M, Kain S, Bolbrinker J, de Jong PE, Navis G . The role of the cytochrome P450 3A5 enzyme for blood pressure regulation in the general Caucasian population. Pharmacogenet Genomics 2005; 15: 831–837.

    Article  CAS  Google Scholar 

  35. Bochud M, Eap CB, Elston RC, Bovet P, Maillard M, Schild L et al. Association of CYP3A5 genotypes with blood pressure and renal function in African families. J Hypertens 2006; 24: 923–929.

    Article  CAS  Google Scholar 

  36. Eap CB, Bochud M, Elston RC, Bovet P, Maillard MP, Nussberger J et al. CYP3A5 and ABCB1 genes influence blood pressure and response to treatment, and their effect is modified by salt. Hypertension 2007; 49: 1007–1014.

    Article  CAS  Google Scholar 

  37. Coto E, Tavira B, Marin R, Ortega F, Lopez-Larrea C, Ruiz-Ortega M et al. Functional polymorphisms in the CYP3A4, CYP3A5, and CYP21A2 genes in the risk for hypertension in pregnancy. Biochem Biophys Res Commun 2010.

  38. Xi B, Wang C, Liu L, Zeng T, Liang Y, Li J et al. Association of the CYP3A5 polymorphism (6986G>A) with blood pressure and hypertension. Hypertens Res 2011; 34: 1216–1220.

    Article  CAS  Google Scholar 

  39. Imaoka S, Funae Y . Hepatic and renal cytochrome P-450s in spontaneously hypertensive rats. Biochim Biophys Acta 1991; 1074: 209–213.

    Article  CAS  Google Scholar 

  40. Morris DJ, Latif SA, Rokaw MD, Watlington CO, Johnson JP . A second enzyme protecting mineralocorticoid receptors from glucocorticoid occupancy. Am J Physiol 1998; 274: C1245–C1252.

    Article  CAS  Google Scholar 

  41. Pinto YM, Paul M, Ganten D . Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res 1998; 39: 77–88.

    Article  CAS  Google Scholar 

  42. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ . Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 2006; 367: 1747–1757.

    Article  Google Scholar 

  43. Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos 2002; 30: 883–891.

    Article  CAS  Google Scholar 

  44. Emoto C, Iwasaki K . Enzymatic characteristics of CYP3A5 and CYP3A4: a comparison of in vitro kinetic and drug-drug interaction patterns. Xenobiotica 2006; 36: 219–233.

    Article  CAS  Google Scholar 

  45. Dai Y, Hebert MF, Isoherranen N, Davis CL, Marsh C, Shen DD et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos 2006; 34: 836–847.

    Article  CAS  Google Scholar 

  46. Mouly SJ, Matheny C, Paine MF, Smith G, Lamba J, Lamba V et al. Variation in oral clearance of saquinavir is predicted by CYP3A5*1 genotype but not by enterocyte content of cytochrome P450 3A5. Clin Pharmacol Ther 2005; 78: 605–618.

    Article  CAS  Google Scholar 

  47. Wong M, Balleine RL, Collins M, Liddle C, Clarke CL, Gurney H . CYP3A5 genotype and midazolam clearance in Australian patients receiving chemotherapy. Clin Pharmacol Ther 2004; 75: 529–538.

    Article  CAS  Google Scholar 

  48. Park JY, Kim KA, Park PW, Lee OJ, Kang DK, Shon JH et al. Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of alprazolam in healthy subjects. Clin Pharmacol Ther 2006; 79: 590–599.

    Article  CAS  Google Scholar 

  49. Suh JW, Koo BK, Zhang SY, Park KW, Cho JY, Jang IJ et al. Increased risk of atherothrombotic events associated with cytochrome P450 3A5 polymorphism in patients taking clopidogrel. CMAJ 2006; 174: 1715–1722.

    Article  Google Scholar 

  50. Langaee TY, Gong Y, Yarandi HN, Katz DA, Cooper-DeHoff RM, Pepine CJ et al. Association of CYP3A5 polymorphisms with hypertension and antihypertensive response to verapamil. Clin Pharmacol Ther 2007; 81: 386–391.

    Article  CAS  Google Scholar 

  51. Jin Y, Wang YH, Miao J, Li L, Kovacs RJ, Marunde R et al. Cytochrome P450 3A5 genotype is associated with verapamil response in healthy subjects. Clin Pharmacol Ther 2007; 82: 579–585.

    Article  CAS  Google Scholar 

  52. Guengerich FP, Brian WR, Iwasaki M, Sari MA, Baarnhielm C, Berntsson P . Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 IIIA4. J Med Chem 1991; 34: 1838–1844.

    Article  CAS  Google Scholar 

  53. Stopher DA, Beresford AP, Macrae PV, Humphrey MJ . The metabolism and pharmacokinetics of amlodipine in humans and animals. J Cardiovasc Pharmacol 1988; 12 (Suppl 7): S55–S59.

    Article  CAS  Google Scholar 

  54. Faulkner JK, McGibney D, Chasseaud LF, Perry JL, Taylor IW . The pharmacokinetics of amlodipine in healthy volunteers after single intravenous and oral doses and after 14 repeated oral doses given once daily. Br J Clin Pharmacol 1986; 22: 21–25.

    Article  CAS  Google Scholar 

  55. Beresford AP, Macrae PV, Alker D, Kobylecki RJ . Biotransformation of amlodipine. Identification and synthesis of metabolites found in rat, dog and human urine/confirmation of structures by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. Arzneimittelforschung 1989; 39: 201–209.

    CAS  PubMed  Google Scholar 

  56. Walker DK, Humphrey MJ, Smith DA . Importance of metabolic stability and hepatic distribution to the pharmacokinetic profile of amlodipine. Xenobiotica 1994; 24: 243–250.

    Article  CAS  Google Scholar 

  57. Kim KA, Park PW, Lee OJ, Choi SH, Min BH, Shin KH et al. Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of amlodipine in healthy Korean subjects. Clin Pharmacol Ther 2006; 80: 646–656.

    Article  CAS  Google Scholar 

  58. Bhatnagar V, Garcia EP, O'Connor DT, Brophy VH, Alcaraz J, Richard E et al. CYP3A4 and CYP3A5 polymorphisms and blood pressure response to amlodipine among African-American men and women with early hypertensive renal disease. Am J Nephrol 2010; 31: 95–103.

    Article  CAS  Google Scholar 

  59. Thervet E, Anglicheau D, King B, Schlageter MH, Cassinat B, Beaune P et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 2003; 76: 1233–1235.

    Article  CAS  Google Scholar 

  60. Haufroid V, Mourad M, Van Kerckhove V, Wawrzyniak J, De Meyer M, Eddour DC et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 2004; 14: 147–154.

    Article  CAS  Google Scholar 

  61. Frohlich M, Hoffmann MM, Burhenne J, Mikus G, Weiss J, Haefeli WE . Association of the CYP3A5 A6986G (CYP3A5*3) polymorphism with saquinavir pharmacokinetics. Br J Clin Pharmacol 2004; 58: 443–444.

    Article  Google Scholar 

  62. Wolf-Maier K, Cooper RS, Banegas JR, Giampaoli S, Hense HW, Joffres M et al. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA 2003; 289: 2363–2369.

    Article  Google Scholar 

  63. Firmann M, Mayor V, Vidal PM, Bochud M, Pecoud A, Hayoz D et al. The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC Cardiovasc Disord 2008; 8: 6.

    Article  Google Scholar 

  64. Brown MJ . Hypertension and ethnic group. BMJ 2006; 332: 833–836.

    Article  CAS  Google Scholar 

  65. Bovet P, Shamlaye C, Gabriel A, Riesen W, Paccaud F . Prevalence of cardiovascular risk factors in a middle-income country and estimated cost of a treatment strategy. BMC Public Health 2006; 6: 9.

    Article  Google Scholar 

  66. Kannel WB, Wolf PA, Verter J, McNamara PM . Epidemiologic assessment of the role of blood pressure in stroke: the Framingham Study. 1970. JAMA 1996; 276: 1269–1278.

    Article  CAS  Google Scholar 

  67. van den Hoogen PC, Feskens EJ, Nagelkerke NJ, Menotti A, Nissinen A, Kromhout D . The relation between blood pressure and mortality due to coronary heart disease among men in different parts of the world. Seven countries study research group. N Engl J Med 2000; 342: 1–8.

    Article  CAS  Google Scholar 

  68. Flack JM, Neaton J, Grimm R Jr., Shih J, Cutler J, Ensrud K et al. Blood pressure and mortality among men with prior myocardial infarction.Multiple risk factor intervention trial research group. Circulation 1995; 92: 2437–2445.

    Article  CAS  Google Scholar 

  69. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK . The progression from hypertension to congestive heart failure. JAMA 1996; 275: 1557–1562.

    Article  CAS  Google Scholar 

  70. Lowe LP, Greenland P, Ruth KJ, Dyer AR, Stamler R, Stamler J . Impact of major cardiovascular disease risk factors, particularly in combination, on 22-year mortality in women and men. Arch. Intern. Med 1998; 158: 2007–2014.

    CAS  Google Scholar 

  71. Tozawa M, Iseki K, Iseki C, Kinjo K, Ikemiya Y, Takishita S . Blood pressure predicts risk of developing end-stage renal disease in men and women. Hypertension 2003; 41: 1341–1345.

    Article  CAS  Google Scholar 

  72. Schwartz GL, Turner ST . Pharmacogenetics of antihypertensive drug responses. Am J Pharmacogenomics 2004; 4: 151–160.

    Article  CAS  Google Scholar 

  73. Kato N . Genetic analysis in human hypertension. Hypertens Res 2002; 25: 319–327.

    Article  CAS  Google Scholar 

  74. Luft FC . Hypertension as a complex genetic trait. Semin Nephrol 2002; 22: 115–126.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2011CB512001), the National Natural Science Foundation of China (NO. 81273594), the National Natural Science Foundation of China (NO. 81102512) and the Doctoral Research and Innovation Project of Hunan Province (No. CX2011B075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Yuan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, YP., Zuo, XC., Huang, ZJ. et al. CYP3A5 polymorphism, amlodipine and hypertension. J Hum Hypertens 28, 145–149 (2014). https://doi.org/10.1038/jhh.2013.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2013.67

Keywords

  • CYP3A5
  • polymorphism
  • blood pressure
  • amlodipine

This article is cited by

Search

Quick links