Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Influence of the AT2 receptor on the L-arginine–nitric oxide pathway and effects of (-)-epicatechin on HUVECs from women with preeclampsia

Abstract

Pregnancy is a state of vasodilation mediated by nitric oxide (NO). This vasodilation is impaired in women with preeclampsia, and an alteration in the L-arginine–NO pathway may be a causal factor. The production of NO and arginase activity were investigated in plasma and human umbilical vein endothelial cells (HUVECs) from women with preeclampsia, which were associated with arginase II, eNOS, caveolin, angiotensin 1 and 2 receptor expression (AT1R and AT2R, respectively). The effect of (−)-epicatechin on arginase activity and production of anion superoxide in HUVEC also were investigated. Healthy volunteer non-pregnant (HV), normal pregnant (NP) and preeclamptic (PE) women were recruited for this study. Higher values of nitrite/nitrate (NO2/NO3) were detected in the plasma from PE women as opposed to HV and NP. Lower arginase activity in PE versus HV or NP women was observed. HUVECs from PE women showed lower values of NO2/NO3, higher activity of arginase and higher expression of AT1R and AT2R than HUVECS from NP women. Interestingly, arginase activity was associated with AT2R stimulation; indeed this activity and the high NADPH (nicotinamide adenine dinucleotide phosphate) oxidase activity in HUVECs from PE women can uncouple the production or inactivation of NO. However, we demonstrated that (−)-epicatechin could lead to a decrease in the activity of both enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Krause BJ, Hanson MA, Casanello P . Role of nitric oxide in placental vascular development and function. Placenta 2011; 32: 797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maynard SE, Karumanchi SA . Angiogenic factors and preeclampsia. Semin Nephrol 2011; 31: 33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pennington KA, Schlitt JM, Jackson DL, Schulz LC, Schust DJ . Preeclampsia: multiple approaches for a multifactorial disease. Dis Model Mech 2012; 5: 9–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Teran E, Escudero C, Moya W . Abnormal release of nitric oxide from nitrosoprotein in preeclampsia. Int J Gynaecol Obstet 2006; 92: 260–261.

    Article  CAS  PubMed  Google Scholar 

  5. Bagnost T, Berthelot A, Bouhaddi M, Laurant P, Andre C, Guillaume Y et al. Treatment with the arginase inhibitor N(omega)-hydroxy-nor-L-arginine improves vascular function and lowers blood pressure in adult spontaneously hypertensive rat. J Hypertens 2008; 26: 1110–1118.

    Article  CAS  PubMed  Google Scholar 

  6. Ash DE . Structure and function of arginases. J Nutr 2004; 134: 2760S–2764S discussion 2765S–2767S..

    Article  CAS  PubMed  Google Scholar 

  7. Berkowitz DE, White R, Li D, Minhas KM, Cernetich A, Kim S et al. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation 2003; 108: 2000–2006.

    Article  CAS  PubMed  Google Scholar 

  8. Ryoo S, Gupta G, Benjo A, Lim HK, Camara A, Sikka G et al. Endothelial arginase II: a novel target for the treatment of atherosclerosis. Circ Res 2008; 102: 923–932.

    Article  CAS  PubMed  Google Scholar 

  9. Demougeot C, Prigent-Tessier A, Marie C, Berthelot A . Arginase inhibition reduces endothelial dysfunction and blood pressure rising in spontaneously hypertensive rats. J Hypertens 2005; 23: 971–978.

    Article  CAS  PubMed  Google Scholar 

  10. Noris M, Todeschini M, Cassis P, Pasta F, Cappellini A, Bonazzola S et al. L-arginine depletion in preeclampsia orients nitric oxide synthase toward oxidant species. Hypertension 2004; 43: 614–622.

    Article  CAS  PubMed  Google Scholar 

  11. Sankaralingam S, Xu H, Davidge ST . Arginase contributes to endothelial cell oxidative stress in response to plasma from women with preeclampsia. Cardiovasc Res 2010; 85: 194–203.

    Article  CAS  PubMed  Google Scholar 

  12. Cui XL, Brockman D, Campos B, Myatt L . Expression of NADPH oxidase isoform 1 (Nox1) in human placenta: involvement in preeclampsia. Placenta 2006; 27: 422–431.

    Article  CAS  PubMed  Google Scholar 

  13. Dechend R, Viedt C, Müller DN, Ugele B, Brandes RP, Wallukat G et al. AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation 2003; 107: 1632–1639.

    Article  CAS  PubMed  Google Scholar 

  14. Redman CWG, Sargent IL . Pre-eclampsia, the placenta and the maternal systemic inflammatory response-a review. Placenta 2003; 24: S21–S27.

    Article  PubMed  Google Scholar 

  15. Xia Y, Wen H, Bobst S, Day MC, Kellems RE . Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human trophoblast cells. J Soc Gynecol Invest 2003; 10: 82–93.

    Article  CAS  Google Scholar 

  16. Corraliza IM, Campo ML, Soler G, Modolell M . Determination of arginase activity in macrophages: a micromethod. J Immunol Methods 1994; 174: 231–235.

    Article  CAS  PubMed  Google Scholar 

  17. Jaffe EA (ed).. Culture and identification of large vessel endothelial cells. in Biology of Endothelial Cells, pp 1–13 (Martinus Nijhoff: Boston, 1984).

    Chapter  Google Scholar 

  18. Alemán I, Alex R, Ramírez M, Hung A, Ramírez C . Endothelial and inducible nitric oxide synthase expression in Venezuelan patients with pre-eclampsia. Invest Clin 2008; 49 (3): 321–330.

    PubMed  Google Scholar 

  19. Baksu B, Davas I, Baksu A, Akyol A, Gulbaba G . Plasma nitric oxide, endothelin-1 and urinary nitric oxide and cyclic guanosine monophosphate levels in hypertensive pregnant women. Int J Gynaecol Obstet 2005; 90 (2): 112–117.

    Article  CAS  PubMed  Google Scholar 

  20. Teran E, Escudero C, Vivero S, Enriquez A, Calle A . Intraplatelet cyclic guanosine-3′,5′-monophosphate levels during pregnancy and preeclampsia. Hypertens Pregnancy 2004; 23 (3): 303–308.

    Article  CAS  PubMed  Google Scholar 

  21. Romero MJ, Platt DH, Tawfik HE, Labazi M, El-Remessy AB, Bartoli M et al. Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ Res 2008; 102: 95–102.

    Article  CAS  PubMed  Google Scholar 

  22. Gao X, Xu X, Belmadani S, Park Y, Tang Z, Feldman AM et al. TNF-alpha contributes to endothelial dysfunction by upregulating arginase in ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol 2007; 27: 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang W, Baban B, Rojas M, Tofigh S, Virmani SK, Patel C et al. Arginase activity mediates retinal inflammation in endotoxin-induced uveitis. Am J Pathol 2009; 175: 891–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sankaralingam S, Xu Y, Sawamura T, Davidge ST . Increased lectin-like oxidized low-density lipoprotein receptor-1 expression in the maternal vasculature of women with preeclampsia: role for peroxynitrite. Hypertension 2009; 53: 270–277.

    Article  CAS  PubMed  Google Scholar 

  25. Matsubara K, Matsubara Y, Hyodo S, Katayama T . Ito M Role of nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. J Obstet Gynaecol Res 2010; 36 (2): 239–247.

    Article  CAS  PubMed  Google Scholar 

  26. Sharma JB, Sharma A, Bahadur A, Vimala N, Satyam A, Mittal S . Oxidative stress markers and antioxidant levels in normal pregnancy and preeclampsia. Int J Gynaecol Obstet 2006; 94 (1): 23–27.

    Article  CAS  PubMed  Google Scholar 

  27. Myatt L, Cui X . Oxidative stress in the placenta. Histochem Cell Biol 2004; 122 (4): 369–382.

    Article  CAS  PubMed  Google Scholar 

  28. Chen GF, Wagner L, Sasser JM, Zharikov S, Moningka NC, Baylis C . Effects of angiotensin type 1 receptor blockade on arginine and ADMA synthesis and metabolic pathways in fawn-hooded hypertensive rats. Nephrol Dialysis Transplant 2010; 25: 3518–3525.

    Article  CAS  Google Scholar 

  29. Mehta PK, Griendling KK . Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007; 292: C82–C97.

    Article  CAS  PubMed  Google Scholar 

  30. Carey RM . Cardiovascular and renal regulation by the angiotensin type 2 receptor: the AT2 receptor comes of age. Hypertension 2005; 45: 840–844.

    Article  CAS  PubMed  Google Scholar 

  31. Carey RM, Padia SH . Angiotensin AT2 receptors: control of renal sodium excretion and blood pressure. Trends Endocrinol Metab 2008; 19: 84–87.

    Article  CAS  PubMed  Google Scholar 

  32. Akbar SA, Khawaja NP, Brown PR, Tayyeb R, Bamfo J, Nicolaides KH . Angiotensin II type 1 and 2 receptors gene polymorphisms in preeclampsia and normal pregnancy in three different populations. Acta Obstet Gynecol Scand 2009; 23: 1–6.

    Google Scholar 

  33. Shatanawi A, Romero MJ, Iddings JA, Chandra S, Umapathy NS, Verin AD et al. Angiotensin II-induced vascular endothelial dysfunction through RhoA/Rho kinase/p38 mitogen-activated protein kinase/arginase pathway. Am J Physiol Cell Physiol 2011; 300: C1181–C1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants IPN-ESM-SIP 20100270, CONACyT CB-2010–01 157739 and CONACyT CB-2009–01 129–889.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R García-Sánchez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Human Hypertension website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Garrido Chem, J., Olivares-Corichi, I., Tovar-Rodriguez, J. et al. Influence of the AT2 receptor on the L-arginine–nitric oxide pathway and effects of (-)-epicatechin on HUVECs from women with preeclampsia. J Hum Hypertens 27, 355–361 (2013). https://doi.org/10.1038/jhh.2012.55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2012.55

Keywords

This article is cited by

Search

Quick links