Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Insulin resistance in young, lean male subjects with essential hypertension

A Corrigendum to this article was published on 12 February 2014

Abstract

Impaired insulin action, frequently found in essential hypertension (HT), is modified by other factors, such as higher age, accumulation of body fat, dyslipidaemia, impaired glucose metabolism and endothelial dysfunction. In addition, antihypertensive and insulin-sensitizing medication itself may significantly affect cardiovascular and metabolic milieu. The aim of this study was to assess insulin sensitivity, acute insulin response, lipidaemic status and the adipokines’ concentrations with regard to abdominal fat distribution in young, lean male subjects with treatment-naïve essential HT and in matched healthy normotensive (NT) subjects. We studied 27 HT patients (age: 19.9±0.6 years; body mass index (BMI): 22.9±0.5 kg m−2) and 15 NT controls (age: 22.3±1.0 years; BMI: 23.7±0.6 kg m−2). The subjects underwent an oral and an intravenous glucose tolerance test (OGTT, IVGTT) on separate days in random order. Higher fasting insulin (P<0.001), non-esterified fatty acids (P<0.05) and plasminogen activator inhibitor factor 1 concentrations (P<0.05) were found in HT patients when compared with NT patients. Despite comparable anthropometric parameters and body fat distribution assessed by magnetic resonance imaging in both groups, newly diagnosed untreated young hypertensive male subjects showed decreased insulin sensitivity, augmented insulin response to both oral and intravenous glucose load (P<0.01; P<0.05 respectively) and ‘higher still normal’ 2-h plasma glucose levels during OGTT. Untreated, young, lean hypertensive male subjects, with distribution of abdominal adipose tissue and lipid profile comparable with their healthy NT matched counterparts, showed considerable signs of insulin resistance and hyperinsulinaemia. We hypothesize that insulin resistance is the initial feature, which is influenced by several environmental factors, and HT is one of their common consequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Moran A, Jacobs Jr DR, Steinberger J, Steffen LM, Pankow JS, Hong CP et al. Changes in insulin resistance and cardiovascular risk during adolescence: establishment of differential risk in males and females. Circulation 2008; 117 (18): 2361–2368.

    Article  CAS  Google Scholar 

  2. Gilardini L, Parati G, Sartorio A, Mazzilli G, Pontiggia B, Invitti C . Sympathoadrenergic and metabolic factors are involved in ambulatory blood pressure rise in childhood obesity. J Hum Hypertens 2008; 22 (2): 75–82.

    Article  CAS  Google Scholar 

  3. Srinivasan SR, Myers L, Berenson GS . Changes in metabolic syndrome variables since childhood in prehypertensive and hypertensive subjects: the Bogalusa Heart Study. Hypertension 2006; 48 (1): 33–39.

    Article  CAS  Google Scholar 

  4. Sinaiko AR, Steinberger J, Moran A, Prineas RJ, Vessby B, Basu S et al. Relation of body mass index and insulin resistance to cardiovascular risk factors, inflammatory factors, and oxidative stress during adolescence. Circulation 2005; 111 (15): 1985–1991.

    Article  CAS  Google Scholar 

  5. Sinaiko AR, Steinberger J, Moran A, Hong CP, Prineas RJ, Jacobs Jr DR . Influence of insulin resistance and body mass index at age 13 on systolic blood pressure, triglycerides, and high-density lipoprotein cholesterol at age 19. Hypertension 2006; 48 (4): 730–736.

    Article  CAS  Google Scholar 

  6. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME . Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989; 298 (6673): 564–567.

    Article  CAS  Google Scholar 

  7. Rosenberg B, Moran A, Sinaiko AR . Insulin resistance (metabolic) syndrome in children. Panminerva Med 2005; 47 (4): 229–244.

    CAS  PubMed  Google Scholar 

  8. Despres JP . Health consequences of visceral obesity. Ann Med 2001; 33 (8): 534–541.

    Article  CAS  Google Scholar 

  9. Hayashi T, Boyko EJ, Leonetti DL, McNeely MJ, Newell-Morris L, Kahn SE et al. Visceral adiposity and the prevalence of hypertension in Japanese Americans. Circulation 2003; 108 (14): 1718–1723.

    Article  Google Scholar 

  10. Sironi AM, Gastaldelli A, Mari A, Ciociaro D, Positano V, Buzzigoli E et al. Visceral fat in hypertension: influence on insulin resistance and beta-cell function. Hypertension 2004; 44 (2): 127–133.

    Article  CAS  Google Scholar 

  11. Redon J, Cifkova R, Laurent S, Nilsson P, Narkiewicz K, Erdine S et al. Mechanisms of hypertension in the cardiometabolic syndrome. J Hypertens 2009; 27 (3): 441–451.

    Article  CAS  Google Scholar 

  12. Sarafidis PA, Bakris GL . Insulin resistance, hyperinsulinemia, and hypertension: an epidemiologic approach. J Cardiometab Syndr 2006; 1 (5): 334–342; quiz 343.

    Article  Google Scholar 

  13. European Society of Hypertension-European Society of Cardiology Guidelines Committee. European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003; 21 (6): 1011–1053.

  14. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004; 114 (2 Suppl., 4th Report): 555–576.

    Article  Google Scholar 

  15. Deurenberg P, Weststrate JA, Seidell JC . Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br J Nutr 1991; 65 (2): 105–114.

    Article  CAS  Google Scholar 

  16. Mari A, Tura A, Pacini G, Kautzky-Willer A, Ferrannini E . Relationships between insulin secretion after intravenous and oral glucose administration in subjects with glucose tolerance ranging from normal to overt diabetes. Diabet Med 2008; 25 (6): 671–677.

    Article  CAS  Google Scholar 

  17. Wallace TM, Levy JC, Matthews DR . Use and abuse of HOMA modeling. Diabetes Care 2004; 27 (6): 1487–1495.

    Article  Google Scholar 

  18. McAuley KA, Williams SM, Mann JI, Walker RJ, Lewis-Barned NJ, Temple LA et al. Diagnosing insulin resistance in the general population. Diabetes Care 2001; 24 (3): 460–464.

    Article  CAS  Google Scholar 

  19. Cederholm J, Wibell L . Insulin release and peripheral sensitivity at the oral glucose tolerance test. Diabetes Res Clin Pract 1990; 10 (2): 167–175.

    Article  CAS  Google Scholar 

  20. Matsuda M, DeFronzo RA . Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999; 22 (9): 1462–1470.

    Article  CAS  Google Scholar 

  21. Modan M, Halkin H, Almog S, Lusky A, Eshkol A, Shefi M et al. Hyperinsulinemia. A link between hypertension obesity and glucose intolerance. J Clin Invest 1985; 75 (3): 809–817.

    Article  CAS  Google Scholar 

  22. Reaven GM . Relationship between insulin resistance and hypertension. Diabetes Care 1991; 14 (Suppl 4): 33–38.

    Article  Google Scholar 

  23. Kautzky-Willer A, Pacini G, Weissel M, Capek M, Ludvik B, Prager R . Elevated hepatic insulin extraction in essential hypertension. Hypertension 1993; 21 (5): 646–653.

    Article  CAS  Google Scholar 

  24. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL . Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 1991; 87 (6): 2246–2252.

    Article  CAS  Google Scholar 

  25. Fossum E, Hoieggen A, Reims HM, Moan A, Rostrup M, Eide I et al. High screening blood pressure is related to sympathetic nervous system activity and insulin resistance in healthy young men. Blood Press 2004; 13 (2): 89–94.

    Article  Google Scholar 

  26. Saito F, Hori MT, Fittingoff M, Hino T, Tuck ML . Insulin attenuates agonist-mediated calcium mobilization in cultured rat vascular smooth muscle cells. J Clin Invest 1993; 92 (3): 1161–1167.

    Article  CAS  Google Scholar 

  27. Trovati M, Massucco P, Anfossi G, Cavalot F, Mularoni E, Mattiello L et al. Insulin influences the renin–angiotensin–aldosterone system in humans. Metabolism 1989; 38 (6): 501–503.

    Article  CAS  Google Scholar 

  28. DeFronzo RA . The effect of insulin on renal sodium metabolism. A review with clinical implications. Diabetologia 1981; 21 (3): 165–171.

    Article  CAS  Google Scholar 

  29. Navegantes LC, Sjostrand M, Gudbjornsdottir S, Strindberg L, Elam M, Lonnroth P . Regulation and counterregulation of lipolysis in vivo: different roles of sympathetic activation and insulin. J Clin Endocrinol Metab 2003; 88 (11): 5515–5520.

    Article  CAS  Google Scholar 

  30. Radikova Z, Penesova A, Cizmarova E, Huckova M, Kvetnansky R, Vigas M et al. Decreased pituitary response to insulin-induced hypoglycaemia in young lean male patients with essential hypertension. J Hum Hypertens 2006; 20 (7): 510–516.

    Article  CAS  Google Scholar 

  31. Boden G . Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes. Exp Clin Endocrinol Diabetes 2003; 111 (3): 121–124.

    Article  CAS  Google Scholar 

  32. Magnan C, Cruciani C, Clement L, Adnot P, Vincent M, Kergoat M et al. Glucose-induced insulin hypersecretion in lipid-infused healthy subjects is associated with a decrease in plasma norepinephrine concentration and urinary excretion. J Clin Endocrinol Metab 2001; 86 (10): 4901–4907.

    Article  CAS  Google Scholar 

  33. Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W et al. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes 2003; 52 (10): 2461–2474.

    Article  CAS  Google Scholar 

  34. Hennes MM, Dua A, Kissebah AH . Effects of free fatty acids and glucose on splanchnic insulin dynamics. Diabetes 1997; 46 (1): 57–62.

    Article  CAS  Google Scholar 

  35. Piche ME, Lemieux S, Perusse L, Weisnagel SJ . High normal 2-h plasma glucose is associated with insulin sensitivity and secretion that may predispose to type 2 diabetes. Diabetologia 2005; 48 (4): 732–740.

    Article  CAS  Google Scholar 

  36. Boyko EJ, Barr EL, Zimmet PZ, Shaw JE . Two-hour glucose predicts the development of hypertension over 5 years: the AusDiab study. J Hum Hypertens 2008; 22 (3): 168–176.

    Article  CAS  Google Scholar 

  37. Cnop M, Landchild MJ, Vidal J, Havel PJ, Knowles NG, Carr DR et al. The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations: distinct metabolic effects of two fat compartments. Diabetes 2002; 51 (4): 1005–1015.

    Article  CAS  Google Scholar 

  38. Ruderman N, Chisholm D, Pi-Sunyer X, Schneider S . The metabolically obese, normal-weight individual revisited. Diabetes 1998; 47 (5): 699–713.

    Article  CAS  Google Scholar 

  39. Toft I, Bonaa KH, Jenssen T . Insulin resistance in hypertension is associated with body fat rather than blood pressure. Hypertension 1998; 32 (1): 115–122.

    Article  CAS  Google Scholar 

  40. Brooks NL, Moore KS, Clark RD, Perfetti MT, Trent CM, Combs TP . Do low levels of circulating adiponectin represent a biomarker or just another risk factor for the metabolic syndrome? Diabetes Obes Metab 2007; 9 (3): 246–258.

    Article  CAS  Google Scholar 

  41. Beltowski J . Role of leptin in blood pressure regulation and arterial hypertension. J Hypertens 2006; 24 (5): 789–801.

    Article  CAS  Google Scholar 

  42. Sung SH, Chuang SY, Sheu WH, Lee WJ, Chou P, Chen CH . Adiponectin, but not leptin or high-sensitivity C-reactive protein, is associated with blood pressure independently of general and abdominal adiposity. Hypertens Res 2008; 31 (4): 633–640.

    Article  CAS  Google Scholar 

  43. Patel DA, Srinivasan SR, Xu JH, Chen W, Berenson GS . Adiponectin and its correlates of cardiovascular risk in young adults: the Bogalusa Heart Study. Metabolism 2006; 55 (11): 1551–1557.

    Article  CAS  Google Scholar 

  44. Stegenga ME, van der Crabben SN, Blumer RM, Levi M, Meijers JC, Serlie MJ et al. Hyperglycemia enhances coagulation and reduces neutrophil degranulation, whereas hyperinsulinemia inhibits fibrinolysis during human endotoxemia. Blood 2008; 112 (1): 82–89.

    Article  CAS  Google Scholar 

  45. Palomo I, Alarcon M, Moore-Carrasco R, Argiles JM . Hemostasis alterations in metabolic syndrome (review). Int J Mol Med 2006; 18 (5): 969–974.

    CAS  PubMed  Google Scholar 

  46. Barac A, Campia U, Panza JA . Methods for evaluating endothelial function in humans. Hypertension 2007; 49 (4): 748–760.

    Article  CAS  Google Scholar 

  47. Juhan-Vague I, Morange PE, Frere C, Aillaud MF, Alessi MC, Hawe E et al. The plasminogen activator inhibitor-1 −675 4G/5G genotype influences the risk of myocardial infarction associated with elevated plasma proinsulin and insulin concentrations in men from Europe: the HIFMECH study. J Thromb Haemost 2003; 1 (11): 2322–2329.

    Article  CAS  Google Scholar 

  48. Laugero KD, Stonehouse AH, Guss S, Landry J, Vu C, Parkes DG . Exenatide improves hypertension in a rat model of the metabolic syndrome. Metab Syndr Relat Disord 2009; 7 (4): 327–334.

    Article  CAS  Google Scholar 

  49. Hirata K, Kume S, Araki S, Sakaguchi M, Chin-Kanasaki M, Isshiki K et al. Exendin-4 has an anti-hypertensive effect in salt-sensitive mice model. Biochem Biophys Res Commun 2009; 380 (1): 44–49.

    Article  CAS  Google Scholar 

  50. Yu M, Moreno C, Hoagland KM, Dahly A, Ditter K, Mistry M et al. Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J Hypertens 2003; 21 (6): 1125–1135.

    Article  CAS  Google Scholar 

  51. Okerson T, Yan P, Stonehouse A, Brodows R . Effects of exenatide on systolic blood pressure in subjects with type 2 diabetes. Am J Hypertens 2010; 23 (3): 334–339.

    Article  CAS  Google Scholar 

  52. Sjöholm A . Impact of glucagon-like peptide-1 on endothelial function. Diabetes Obes Metab 2009; 11 (Suppl 3): 19–25.

    Article  Google Scholar 

  53. Cabou C, Campistron G, Marsollier N, Leloup C, Cruciani-Guglielmacci C, Pénicaud L et al. Brain glucagon-like peptide-1 regulates arterial blood flow, heart rate, and insulin sensitivity. Diabetes 2008; 57 (10): 2577–2587.

    Article  CAS  Google Scholar 

  54. Pollare T, Lithell H, Berne C . Insulin resistance is a characteristic feature of primary hypertension independent of obesity. Metabolism 1990; 39 (2): 167–174.

    Article  CAS  Google Scholar 

  55. Ferrari P, Weidmann P, Shaw S, Giachino D, Riesen W, Allemann Y et al. Altered insulin sensitivity, hyperinsulinemia, and dyslipidemia in individuals with a hypertensive parent. Am J Med 1991; 91 (6): 589–596.

    Article  CAS  Google Scholar 

  56. Beatty OL, Harper R, Sheridan B, Atkinson AB, Bell PM . Insulin resistance in offspring of hypertensive parents. BMJ 1993; 307 (6896): 92–96.

    Article  CAS  Google Scholar 

  57. Ohno Y, Suzuki H, Yamakawa H, Nakamura M, Otsuka K, Saruta T . Impaired insulin sensitivity in young, lean normotensive offspring of essential hypertensives: possible role of disturbed calcium metabolism. J Hypertens 1993; 11 (4): 421–426.

    Article  CAS  Google Scholar 

  58. Endre T, Mattiasson I, Hulthen UL, Lindgarde F, Berglund G . Insulin resistance is coupled to low physical fitness in normotensive men with a family history of hypertension. J Hypertens 1994; 12 (1): 81–88.

    Article  CAS  Google Scholar 

  59. Vlasakova Z, Pelikanova T, Karasova L, Skibova J . Insulin secretion, sensitivity, and metabolic profile of young healthy offspring of hypertensive parents. Metabolism 2004; 53 (4): 469–475.

    Article  CAS  Google Scholar 

  60. Papadopoulos DP, Makris TK, Perrea D, Papazachou O, Daskalaki M, Sanidas E et al. Adiponectin--insulin and resistin plasma levels in young healthy offspring of patients with essential hypertension. Blood Press 2008; 17 (1): 50–54.

    Article  CAS  Google Scholar 

  61. DeFronzo RA, Tobin JD, Andres R . Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979; 237 (3): E214–E223.

    CAS  Google Scholar 

  62. Radikova Z, Koska J, Huckova M, Ksinantova L, Imrich R, Vigas M et al. Insulin sensitivity indices: a proposal of cut-off points for simple identification of insulin-resistant subjects. Exp Clin Endocrinol Diabetes 2006; 114 (5): 249–256.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants VEGA 2/7178/27, MZ 2007/27-SAV-02 and CENDO SAV. We thank Mrs Emilia Andelova for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Radikova.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penesova, A., Cizmarova, E., Belan, V. et al. Insulin resistance in young, lean male subjects with essential hypertension. J Hum Hypertens 25, 391–400 (2011). https://doi.org/10.1038/jhh.2010.72

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2010.72

Keywords

This article is cited by

Search

Quick links