Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Plasma C-terminal pro-endothelin-1 is associated with left ventricular mass index and aortic root diameter in African-American adults with hypertension

Abstract

Endothelin-1 (ET-1), a circulating vasoactive peptide with potent vasoconstricting and mitogenic properties, may contribute to target-organ damage in hypertension. We investigated whether plasma levels of C-terminal pro-endothelin-1 (CT-pro-ET-1) are associated with left ventricular (LV) mass and aortic root diameter in African-American adults with hypertension. Plasma CT-pro-ET-1 was measured by an immunoluminometric assay in 1041 African Americans (65±9 years, 72% women) with hypertension. LV mass and aortic root diameter were measured according to the American Society of Echocardiography guidelines, and LV mass was indexed by height to the power 2.7 (LVMi). Multivariable regression analyses were used to assess whether plasma CT-pro-ET-1 was associated with LVMi and aortic root diameter, independent of potential confounding variables. Plasma CT-pro-ET-1 was modestly correlated with LVMi (r=0.21, P<0.0001) and aortic root diameter (r=0.09, P=0.004). In separate multivariable regression models that adjusted for age, sex, body mass index, total and high-density lipoprotein cholesterol, smoking history, diabetes, history of myocardial infarction or stroke, and blood pressure-lowering medication and statin use, log CT-pro-ET-1 was significantly associated with greater LVMi (P=0.001) and larger aortic root diameter (P=0.006). CT-pro-ET-1 is independently associated with LVMi and aortic root diameter and may be a marker of target-organ damage in African-Americans adults with hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332 (6163): 411–415.

    Article  CAS  Google Scholar 

  2. Agapitov AV, Haynes WG . Role of endothelin in cardiovascular disease. J Renin Angiotensin Aldosterone Syst 2002; 3 (1): 1–15.

    Article  CAS  Google Scholar 

  3. Fujisaki H, Ito H, Hirata Y, Tanaka M, Hata M, Lin M et al. Natriuretic peptides inhibit angiotensin II-induced proliferation of rat cardiac fibroblasts by blocking endothelin-1 gene expression. J Clin Invest 1995; 96 (2): 1059–1065.

    Article  CAS  Google Scholar 

  4. Yoshimoto S, Ishizaki Y, Sasaki T, Murota S . Effect of carbon dioxide and oxygen on endothelin production by cultured porcine cerebral endothelial cells. Stroke 1991; 22 (3): 378–383.

    Article  CAS  Google Scholar 

  5. Weitzberg E, Ahlborg G, Lundberg JM . Long-lasting vasoconstriction and efficient regional extraction of endothelin-1 in human splanchnic and renal tissues. Biochem Biophys Res Commun 1991; 180 (3): 1298–1303.

    Article  CAS  Google Scholar 

  6. Brunner F, Stessel H, Watzinger N, Loffler BM, Opie LH . Binding of endothelin to plasma proteins and tissue receptors: effects on endothelin determination, vasoactivity, and tissue kinetics. FEBS Lett 1995; 373 (1): 97–101.

    Article  CAS  Google Scholar 

  7. Sirvio ML, Metsarinne K, Saijonmaa O, Fyhrquist F . Tissue distribution and half-life of 125I-endothelin in the rat: importance of pulmonary clearance. Biochem Biophys Res Commun 1990; 167 (3): 1191–1195.

    Article  CAS  Google Scholar 

  8. Papassotiriou J, Morgenthaler NG, Struck J, Alonso C, Bergmann A . Immunoluminometric assay for measurement of the C-terminal endothelin-1 precursor fragment in human plasma. Clin Chem 2006; 52 (6): 1144–1151.

    Article  CAS  Google Scholar 

  9. Casale PN, Devereux RB, Milner M, Zullo G, Harshfield GA, Pickering TG et al. Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med 1986; 105 (2): 173–178.

    Article  CAS  Google Scholar 

  10. Liao Y, Cooper RS, McGee DL, Mensah GA, Ghali JK . The relative effects of left ventricular hypertrophy, coronary artery disease, and ventricular dysfunction on survival among black adults. JAMA 1995; 273 (20): 1592–1597.

    Article  CAS  Google Scholar 

  11. Gardin JM, Arnold AM, Polak J, Jackson S, Smith V, Gottdiener J . Usefulness of aortic root dimension in persons &gt; or = 65 years of age in predicting heart failure, stroke, cardiovascular mortality, all-cause mortality and acute myocardial infarction (from the Cardiovascular Health Study). Am J Cardiol 2006; 97 (2): 270–275.

    Article  Google Scholar 

  12. Kizer JR, Arnett DK, Bella JN, Paranicas M, Rao DC, Province MA et al. Differences in left ventricular structure between black and white hypertensive adults: the Hypertension Genetic Epidemiology Network study. Hypertension 2004; 43 (6): 1182–1188.

    Article  CAS  Google Scholar 

  13. Kim CX, Bailey KR, Klee GG, Ellington AA, Liu G, Mosley TH et al. Sex and ethnic differences in 47 candidate proteomic markers of cardiovascular disease: The Mayo Clinic Proteomic Markers of Arteriosclerosis Study. PLoS One 2010; 5 (2): e9065.

    Article  Google Scholar 

  14. Boerwinkle E . Multi-center genetic study of hypertension: the Family Blood Pressure Program (FBPP). Hypertension 2002; 39 (1): 3–9.

    Article  Google Scholar 

  15. Al-Omari MA, Khaleghi M, Mosley Jr TH, Turner ST, Morgenthaler NG, Struck J et al. Mid-regional pro-adrenomedullin is associated with pulse pressure, left ventricular mass, and albuminuria in African Americans with hypertension. Am J Hypertens 2009; 22 (8): 860–866.

    Article  CAS  Google Scholar 

  16. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006; 145 (4): 247–254.

    Article  CAS  Google Scholar 

  17. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986; 57 (6): 450–458.

    Article  CAS  Google Scholar 

  18. Quinones MA, Waggoner AD, Reduto LA, Nelson JG, Young JB, Winters Jr WL et al. A new, simplified and accurate method for determining ejection fraction with two-dimensional echocardiography. Circulation 1981; 64 (4): 744–753.

    Article  CAS  Google Scholar 

  19. Roman MJ, Devereux RB, Kramer-Fox R, O’Loughlin J . Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol 1989; 64 (8): 507–512.

    Article  CAS  Google Scholar 

  20. Jernberg T, Stridsberg M, Lindahl B . Usefulness of plasma N-terminal proatrial natriuretic peptide (proANP) as an early predictor of outcome in unstable. Am J Cardiol 2002; 89 (1): 64–66.

    Article  CAS  Google Scholar 

  21. Mueller T, Gegenhuber A, Poelz W, Haltmayer M . Head-to-head comparison of the diagnostic utility of BNP and NT-proBNP in symptomatic and asymptomatic structural heart disease. Clin Chim Acta 2004; 341 (1–2): 41–48.

    Article  CAS  Google Scholar 

  22. Aubin P, Le Brun G, Moldovan F, Villette JM, Creminon C, Dumas J et al. Sandwich-type enzyme immunoassay for big endothelin-I in plasma: concentrations in healthy human subjects unaffected by sex or posture. Clin Chem 1997; 43 (1): 64–70.

    CAS  PubMed  Google Scholar 

  23. Hua L, Li C, Xia D, Qu P, Li Z, Zhang W et al. Relationship between hypertensive left ventricular hypertrophy and levels of endothelin and nitric oxide. Hypertens Res 2000; 23 (4): 377–380.

    Article  CAS  Google Scholar 

  24. Parrinello G, Scaglione R, Pinto A, Corrao S, Cecala M, Di Silvestre G et al. Central obesity and hypertension: the role of plasma endothelin. Am J Hypertens 1996; 9 (12 Part 1): 1186–1191.

    Article  CAS  Google Scholar 

  25. Lowbeer C, Ottosson-Seeberger A, Gustafsson SA, Norrman R, Hulting J, Gutierrez A . Increased cardiac troponin T and endothelin-1 concentrations in dialysis patients may indicate heart disease. Nephrol Dial Transplant 1999; 14 (8): 1948–1955.

    Article  CAS  Google Scholar 

  26. Irzmanski R, Banach M, Piechota M, Kowalski J, Barylski M, Cierniewski C et al. Atrial and brain natriuretic peptide and endothelin-1 concentration in patients with idiopathic arterial hypertension: the dependence on the selected morphological parameters. Clin Exp Hypertens 2007; 29 (3): 149–164.

    Article  CAS  Google Scholar 

  27. Olsen MH, Wachtell K, de Simone G, Palmieri V, Dige-Petersen H, Devereux RB et al. Is inappropriate left ventricular mass related to neurohormonal factors and/or arterial changes in hypertension? A LIFE substudy. J Hum Hypertens 2004; 18 (6): 437–443.

    Article  CAS  Google Scholar 

  28. Uusimaa P, Tokola H, Ylitalo A, Vuolteenaho O, Ruskoaho H, Risteli J et al. Plasma B-type natriuretic peptide reflects left ventricular hypertrophy and diastolic function in hypertension. Int J Cardiol 2004; 97 (2): 251–256.

    Article  Google Scholar 

  29. Sayama H, Nakamura Y, Saito N, Kinoshita M, Suda M . Relationship between left ventricular geometry and brain natriuretic peptide levels in elderly subjects. Gerontology 2000; 46 (2): 71–77.

    Article  CAS  Google Scholar 

  30. Masaki T, Kimura S, Yanagisawa M, Goto K . Molecular and cellular mechanism of endothelin regulation. Implications for vascular function. Circulation 1991; 84 (4): 1457–1468.

    Article  CAS  Google Scholar 

  31. Ichikawa KI, Hidai C, Okuda C, Kimata SI, Matsuoka R, Hosoda S et al. Endogenous endothelin-1 mediates cardiac hypertrophy and switching of myosin heavy chain gene expression in rat ventricular myocardium. J Am Coll Cardiol 1996; 27 (5): 1286–1291.

    Article  CAS  Google Scholar 

  32. Yorikane R, Sakai S, Miyauchi T, Sakurai T, Sugishita Y, Goto K . Increased production of endothelin-1 in the hypertrophied rat heart due to pressure overload. FEBS Lett 1993; 332 (1–2): 31–34.

    Article  CAS  Google Scholar 

  33. Ito H, Hirata Y, Hiroe M, Tsujino M, Adachi S, Takamoto T et al. Endothelin-1 induces hypertrophy with enhanced expression of muscle-specific genes in cultured neonatal rat cardiomyocytes. Circ Res 1991; 69 (1): 209–215.

    Article  CAS  Google Scholar 

  34. Kaddoura S, Firth JD, Boheler KR, Sugden PH, Poole-Wilson PA . Endothelin-1 is involved in norepinephrine-induced ventricular hypertrophy in vivo. Acute effects of bosentan, an orally active, mixed endothelin ETA and ETB receptor antagonist. Circulation 1996; 93 (11): 2068–2079.

    Article  CAS  Google Scholar 

  35. Palmieri V, Bella JN, Arnett DK, Roman MJ, Oberman A, Kitzman DW et al. Aortic root dilatation at sinuses of valsalva and aortic regurgitation in hypertensive and normotensive subjects: The Hypertension Genetic Epidemiology Network Study. Hypertension 2001; 37 (5): 1229–1235.

    Article  CAS  Google Scholar 

  36. Cuspidi C, Meani S, Valerio C, Esposito A, Sala C, Maisaidi M et al. Ambulatory blood pressure, target organ damage and aortic root size in never-treated essential hypertensive patients. J Hum Hypertens 2007; 21 (7): 531–538.

    Article  CAS  Google Scholar 

  37. Vasan RS, Larson MG, Levy D . Determinants of echocardiographic aortic root size. The Framingham Heart Study. Circulation 1995; 91 (3): 734–740.

    Article  CAS  Google Scholar 

  38. Ergul A, Portik-Dobos V, Giulumian AD, Molero MM, Fuchs LC . Stress upregulates arterial matrix metalloproteinase expression and activity via endothelin A receptor activation. Am J Physiol Heart Circ Physiol 2003; 285 (5): H2225–H2232.

    Article  CAS  Google Scholar 

  39. Murray DB, Gardner JD, Brower GL, Janicki JS . Endothelin-1 mediates cardiac mast cell degranulation, matrix metalloproteinase activation, and myocardial remodeling in rats. Am J Physiol Heart Circ Physiol 2004; 287 (5): H2295–H2299.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants HL-81331 and M01 RR00585 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I J Kullo.

Ethics declarations

Competing interests

Dr Morgenthaler, Dr Struck and Dr Bergmann are employed by BRAHMS AG, which developed the assay that we used for the measurement of CT-pro-ET-1 in this study. The other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Omari, M., Khaleghi, M., Mosley, T. et al. Plasma C-terminal pro-endothelin-1 is associated with left ventricular mass index and aortic root diameter in African-American adults with hypertension. J Hum Hypertens 25, 106–113 (2011). https://doi.org/10.1038/jhh.2010.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2010.20

Keywords

Search

Quick links