Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Plasma adiponectin concentration is associated with ambulatory daytime systolic blood pressure but not with the dipping status

Abstract

The objective of this study was to analyse the relationship between the ambulatory blood pressure (ABP) measurement and plasma adiponectin levels in a population-based cohort. Non-hypertensive, non-diabetics from the Oulu Project Elucidating Risk of Atherosclerosis cohort aged 40–60 years with ABP measurement available in 226 men and 236 women were analysed. ABP was recorded using the fully automatic SpaceLabs 90207 oscillometric unit. Plasma adiponectin concentrations were assayed using the enzyme-linked immunosorbent assay method. Without adjustment the highest plasma adiponectin tertile was associated with the lowest ABP and office BP measurements (P from 0.025 to P<0.001, respectively). Only the association of plasma adiponectin concentration with systolic ABP was independent of other conventional risk factors (age, body mass index (BMI), waist, gender, insulin sensitivity index, smoking and alcohol consumption) for hypertension (P=0.017). No association was observed between systolic dipping pattern and adiponectin level. The plasma high adiponectin concentration is independently associated with low daytime systolic ABP value. The mechanisms may include effects on endothelial function and the sympathetic nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Matsuzawa Y . Adiponectin: identification, physiology and clinical relevance in metabolic and vascular disease. Atheroscler Suppl 2005; 6: 7–14.

    Article  CAS  Google Scholar 

  2. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930–1935.

    Article  CAS  Google Scholar 

  3. Shimabukuro M, Higa N, Asahi T, Oshiro Y, Takasu N, Tagawa T et al. Hypoadiponectinemia is closely linked to endothelial dysfunction in man. J Clin Endocrinol Metab 2003; 88: 3236–3240.

    Article  CAS  Google Scholar 

  4. Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol 2003; 23: 85–89.

    Article  CAS  Google Scholar 

  5. Guerre-Millo M . Adiponectin: an update (review). Diabetes Metab 2008; 34: 12–18.

    Article  CAS  Google Scholar 

  6. Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB . Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004; 291: 1730–1737.

    Article  CAS  Google Scholar 

  7. Santaniemi M, Kesäniemi YA, Ukkola O . Low plasma adiponectin concentration is an indicator of the metabolic syndrome. Eur J Endocrinol 2006; 155: 745–750.

    Article  CAS  Google Scholar 

  8. Cesari M, Pessina A, Zanchetta M, De Toni R, Avogaro A, Pedon L et al. Low plasma adiponectin is associated with coronary artery disease but not with hypertension in high-risk nondiabetic patients. J Intern Med 2006; 260: 474–483.

    Article  CAS  Google Scholar 

  9. Chow W, Cheung B, Tso A, Xu A, Wat N, Fong C et al. Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective study. Hypertension 2007; 49: 1455–1461.

    Article  CAS  Google Scholar 

  10. Otsuka F, Sugiyama S, Kojima S, Maruyoshi H, Funahashi T, Sakamoto T et al. Hypoadiponectinemia is associated with impaired glucose tolerance and coronary artery disease in non-diabetic men. Circ J 2007; 71: 1703–1709.

    Article  CAS  Google Scholar 

  11. Tsioufis C, Dimitriadis K, Selima M, Thomopoulos C, Mihas C, Skiadas I et al. Low-grade inflammation and hypoadiponectinaemia have an additive detrimental effect on aortic stiffness in essential hypertensive patients. Eur Heart J 2007; 28: 1162–1169.

    Article  CAS  Google Scholar 

  12. Sung S, Chuang S, Sheu W, Lee W, Chu P, Chen C . Adiponectin, but not leptin or high-sensitivity C-reactive protein, is associated with blood pressure independently of general and abdominal adiposity. Hypertens Res 2008; 31: 633–640.

    Article  CAS  Google Scholar 

  13. Kazumi T, Kawaguchi A, Sakai K, Hirano T, Yoshino G . Young men with high-normal blood pressure have lower serum adiponectin, smaller LDL size, and higher elevated heart rate than those with optimal blood pressure. Diabetes Care 2002; 16: 72–75.

    Google Scholar 

  14. Huang K, Chen C, Chuang L, Ho S, Tai T, Yang W . Plasma adiponectin levels and blood pressures in nondiabetic adolescent females. J Clin Endocrinol Metab 2003; 88: 4130–4134.

    Article  CAS  Google Scholar 

  15. Imai Y, Satoh H, Nagai K, Sakuma M, Sakuma H, Minami N et al. Characteristics of a community-based distribution of home blood pressure in Ohasama in northern Japan. J Hypertens 1993; 11 (12): 1441–1449.

    Article  CAS  Google Scholar 

  16. Imai Y, Ohkubo T . Ambulatory blood pressure normality: experience in the Ohasama study. Blood Press Monit 1998; 3 (3): 185–188.

    CAS  PubMed  Google Scholar 

  17. Verdecchia P . Ambulatory blood pressure: current evidence and clinical implications. Hypertension 2000; 35: 844–851.

    Article  CAS  Google Scholar 

  18. O'Brien E, Sheridan J, O'Malley K . Dippers and non-dippers. Lancet 1988; 2: 397.

    Article  CAS  Google Scholar 

  19. Verdecchia P, Schillaci G, Guerrieri M, Gatteschi C, Benemio G, Boldrini F et al. Circadian blood pressure changes and left ventricular hypertrophy in essential hypertension. Circulation 1990; 81: 528–536.

    Article  CAS  Google Scholar 

  20. Verdecchia P, Schillaci G, Zampi I, Gatteschi C, Battistelli M, Bartocchini C et al. Blunted nocturnal fall in blood pressure in hypertensive women with future cardiovascular morbid events. Circulation 1993; 88: 986–992.

    Article  CAS  Google Scholar 

  21. Timio M, Venanzi S, Lolli S, Lippi C, Verdura E, Guerrini E et al. Daytime blood pressure and progression of renal insufficiency. High Blood Pressure Cardiovasc Prev 1994; 3: 39–44.

    Google Scholar 

  22. Fagard RH, Staessen JA, Thijs L . The relationships between left ventricular mass and daytime and daytime blood pressure: a meta-analysis of comparative studies. J Hypertens 1995; 13: 823–829.

    Article  CAS  Google Scholar 

  23. Mancia G, Parati G . Ambulatory blood pressure monitoring and organ damage. Hypertension 2000; 36: 894–900.

    Article  CAS  Google Scholar 

  24. Pickering TG, Shimbo D, Haas D . Ambulatory blood-pressure monitoring. N Engl J Med 2006; 354 (22): 2368–2374.

    Article  CAS  Google Scholar 

  25. Tsioufis C, Antoniadis D, Stefanadis C, Tzioumis K, Pitsavos C, Kallikazaros I et al. Relationships between new risk factors and circadian blood pressure variation in untreated subjects with essential hypertension. Am J Hypertens 2002; 15 (7 Pt 1): 600–604.

    Article  CAS  Google Scholar 

  26. Della Mea P, Lupia M, Bandolin V, Guzzon S, Sonino N, Vettor R et al. Adiponectin, insulin resistance, and left ventricular structure in dipper and non-dipper essential hypertensive patients. Am J Hypertens 2005; 18 (1): 30–35.

    Article  Google Scholar 

  27. Rantala AO, Kauma H, Lilja M, Savolainen MJ, Reunanen A, Kesäniemi YA . Prevalence of the metabolic syndrome in drug-treated hypertensive patients and control subjects. J Intern Med 1999; 245 (2): 163–174.

    Article  CAS  Google Scholar 

  28. Kauma H, Savolainen MJ, Heikkilä R, Rantala AO, Lilja M, Reunanen A et al. Sex difference in the regulation of plasma high density lipoprotein cholesterol by genetic and environmental factors. Hum Genet 1996; 97 (2): 156–162.

    Article  CAS  Google Scholar 

  29. Pöykkö SM, Ukkola O, Kauma H, Kellokoski E, Hörkkö S, Kesäniemi YA . The negative association between plasma ghrelin and IGF-I is modified by obesity, insulin resistance and type 2 diabetes. Diabetologia 2005; 48 (2): 309–316.

    Article  Google Scholar 

  30. Huikuri HV, Ylitalo A, Pikkujämsä SM, Ikäheimo MJ, Airaksinen KE, Rantala AO et al. Heart rate variability in systemic hypertension. Am J Cardiol 1996; 77 (12): 1073–1077.

    Article  CAS  Google Scholar 

  31. O'Brien E, Coats A, Owens P, Petrie J, Padfield P, Littler WA et al. Use and, interpretation of ambulatory blood pressure monitoring: recommendations of the British Hypertension Society. BMJ 2000; 320: 1128–1134.

    Article  CAS  Google Scholar 

  32. Ylitalo A . Cardiovascular autonomic regulation in systemic hypertension. Acta Universitatis Ouluensis Medica, D 519 1999: 37 ISBN 951-42-5211-X. ISSN 0355-3221.

  33. Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N et al. Role of adiponectin in preventing vascular stenosis: the missing link of adipo-vascular axis. J Biol Chem 2002; 277 (40): 37487–37491.

    Article  CAS  Google Scholar 

  34. Hopkins TA, Ouchi N, Shibata R, Walsh K . Adiponectin actions in the cardiovascular system. Cardiovasc Res 2007; 74 (1): 11–18.

    Article  CAS  Google Scholar 

  35. Zhu W, Cheng KY, Vanhoutte PM, Lam KS, Xu A . Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention. Clin Sci 2008; 114: 361–374.

    Article  CAS  Google Scholar 

  36. Imai J, Katagiri H, Yamada T, Ishigaki Y, Ogihara T, Uno K et al. Cold exposure suppresses serum adiponectin levels through sympathetic nerve activation in mice. Obesity (Silver Spring) 2006; 14: 1132–1141.

    Article  CAS  Google Scholar 

  37. Wang ZV, Scherer PE . Adiponectin, cardiovascular function, and hypertension. Hypertension 2008; 51 (1): 8–14.

    Article  CAS  Google Scholar 

  38. Strandberg TE, Pitkälä K . What is the most important component of blood pressure: systolic, diastolic or pulse pressure? Curr Opin Nephrol Hypertens 2003; 12 (3): 293–297.

    Article  Google Scholar 

  39. Lam KS, Xu A . Adiponectin: protection of the endothelium. Curr Diab Rep 2005; 5: 254–259.

    Article  CAS  Google Scholar 

  40. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257: 79–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Medical Council of the Academy of Finland and the Finnish Foundation for Cardiovascular Research. We acknowledge the excellent technical assistance of Ms Helena Kalliokoski, Ms Saija Kortetjärvi, Ms Sirpa Rannikko and Ms Liisa Mannermaa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Ukkola.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasunta, R., Kesäniemi, Y. & Ukkola, O. Plasma adiponectin concentration is associated with ambulatory daytime systolic blood pressure but not with the dipping status. J Hum Hypertens 24, 545–551 (2010). https://doi.org/10.1038/jhh.2009.98

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2009.98

Keywords

This article is cited by

Search

Quick links