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Logistic Bayesian LASSO for genetic association
analysis of data from complex sampling designs

Yuan Zhang1, Jonathan N Hofmann2, Mark P Purdue2, Shili Lin3 and Swati Biswas1

Detecting gene–environment interactions with rare variants is critical in dissecting the etiology of common diseases. Interactions

with rare haplotype variants (rHTVs) are of particular interest. At the same time, complex sampling designs, such as stratified

random sampling, are becoming increasingly popular for designing case–control studies, especially for recruiting controls. The

US Kidney Cancer Study (KCS) is an example, wherein all available cases were included while the controls at each site were

randomly selected from the population by frequency matching with cases based on age, sex and race. There is currently no rHTV

association method that can account for such a complex sampling design. To fill this gap, we consider logistic Bayesian LASSO

(LBL), an existing rHTV approach for case–control data, and show that its model can easily accommodate the complex sampling

design. We study two extensions that include stratifying variables either as main effects only or with additional modeling of their

interactions with haplotypes. We conduct extensive simulation studies to compare the complex sampling methods with the

original LBL methods. We find that, when there is no interaction between haplotype and stratifying variables, both extensions

perform well while the original LBL methods lead to inflated type I error rates. However, when such an interaction exists, it is

necessary to include the interaction effect in the model to control the type I error rate. Finally, we analyze the KCS data and

find a significant interaction between (current) smoking and a specific rHTV in the N-acetyltransferase 2 gene.
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INTRODUCTION

Rare variants and gene–environment interactions (GXE) have been
suggested in the literature as potential causes of ‘missing heritability’ in
common diseases. We consider these problems by focusing on G being
a rare haplotype variant (rHTV), which may reflect a combination of
common single-nucleotide polymorphisms (SNPs). Thus rHTVs can
be studied even in existing genome-wide association studies data
without the need to sequence any additional data. Recently, we have
proposed an approach for rHTV association for case–control data
called logistic Bayesian LASSO (LBL).1 We have extended it to handle
GXE under the assumption of G–E independence as well as when
this assumption is relaxed or there is an uncertainty about it.2–4

LBL shrinks the effects of unassociated haplotypes or their interactions
with environmental covariates toward zero, so that the associated
effects can be identified with considerable power.5–7 In fact, LBL is one
of the most powerful rHTV methods.8

Complex sampling designs are being utilized with increasing
frequency in case–control studies, especially for sampling of the
controls. Typically, all available cases are included while controls are
selected by stratified sampling using frequency matching with cases.
Strata are usually formed based on known risk factors, such as race,
age and sex. Often one or more strata, especially those containing

minorities, are oversampled to obtain more controls. To account for
different sampling rates arising from unequal sampling among strata,
population weights are calculated, which indicate the number of
population members represented by each sample subject. It is
important to use these weights in the analysis to avoid bias in the
results. However, at the same time, the use of weights also eliminates
the power and efficiency in case–control studies due to the fact that
population weights for controls are usually much larger than those
for cases, leading to large variability in weights.9 To regain some of the
lost efficiency, rescaling of population weights has been suggested.10

For example, one way of rescaling is such that the sum of the
case (control) weights is equal to case (control) sample size. Another
type of rescaling is to have the sum of weights of controls be equal to
the sum of weights of cases.
The US Kidney Cancer Study (KCS) was designed using a complex

sampling scheme through stratified random sampling for recruiting
subjects.11,12 It was conducted at two sites—Chicago and Detroit.
Cases identified from the Metropolitan Detroit Cancer Surveillance
System and Cook County hospitals were recruited. At each site, the
controls were frequency matched to cases based on age, sex and race.
The matching rate of controls to cases was 2:1 in blacks and 1:1 in
whites. Age groups were formed at 5-year intervals starting from 20 to
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79 years. For age groups ⩾ 65 years, controls were chosen from the
database of Medicare beneficiaries, which has information on age, sex
and race. For age groups o65 years, controls were chosen from
a listing of the Department of Motor Vehicles, which contains
information on age and sex but not on race. As a proxy for race,
strata of low and high black densities were formed based on Census
data. Thus the overall strata were formed by cross-classification of age,
sex and race (or black density). In addition to these stratifying
variables, KCS collected covariates such as smoking status, high blood
pressure, education level and body mass index. As described in
Colt et al.,12 to account for features related to the complex sampling
design (differential sampling rates for controls and cases, survey
nonresponse and deficiencies in coverage of the population at risk
in the Department of Motor Vehicles and Medicare files), population
weights were formed for each sampled individual.
Several authors have analyzed the KCS data and reported risk

factors for kidney cancer such as smoking, obesity and
hypertension.12–14 Besides, genetic susceptibility and its interaction
with environmental factors have been reported to affect the risk
as reported in the KCS and other studies.15–19 In particular, the
N-acetyltransferase 2 (NAT2) gene is known to code for an enzyme
involved in tobacco-carcinogen mechanism. Semenza et al.15 found
that smoking-related risk of kidney cancer is higher among those
carrying a polymorphic variant of NAT2 called slow acetylator
genotype than rapid acetylators. Longuemaux et al.20 observed
a higher risk of kidney cancer for subjects with NAT2 slow acetylators
combined with CYP1A1 variants; however, they did not study GXE.
To the best of our knowledge, there is currently no rHTV

association method that can account for complex sampling design
such as that adopted in the KCS. To fill this gap, we adapt the LBL
model to analyze this type of data. We show that stratified sampling
with frequency matching can be easily accounted for in the framework
of LBL without any additional modeling. We conduct simulation
studies to investigate the properties of the extensions and compare
with the original LBL method. Finally, we also analyze the KCS data to
study the NAT2–smoking interaction.

MATERIALS AND METHODS

The method mostly follows from Zhang et al.4 with necessary adaptation
to include stratifying variables and population weights. Suppose we have
a case–control sample consisting of n1 cases and n2 controls with n1+n2=n.
Let Yi= 1/0 denote the case/control status of the ith individual, i= 1,…,n and
Y= (Y1,…,Yn). Let Gi denote the observed genotype of the ith individual and
G= (G1,…,Gn). We then let SðGiÞ be the set of haplotype pairs compatible
with Gi as the haplotype pair of a person may not be completely determined
from the observed genotypes. Further we denote the rth haplotype pair in
SðGiÞ by Zir. Next we denote the vector of environmental covariates of the
ith individual by Ei. For a complex sampling design, the stratifying variables
have a key role, and they are denoted collectively as Si for individual i. In this
paper, we consider both E and S to be categorical.

Complex sampling design structure and analysis
For the type of complex sampling considered in this paper, the sampling
mechanism leads to known (rescaled) population weights, wi, for the ith
individual. In simple terms, wi is the number of individuals in the population
that the ith sampled person represents. It is essentially the ratio of the number
of individuals available to be sampled (population size) to the number
of individuals actually sampled (sample size) in the stratum to which the
ith individual belongs. In surveys, non-response and poststratification
adjustments are further made to these weights, and they are made available
along with the rest of the sample data.9 The weights are typically rescaled to
increase efficiency as mentioned in the Introduction section. Further details on
calculation of weights will be provided in the ‘Simulation study’ section.

The basic principle that we follow for incorporating complex sampling
design in the Bayesian framework is to write the analysis model conditional on
the information and variables that describe the data collection process.21 That
is, for writing the likelihood, we condition on the fact that the frequencies of
cases and controls were matched (in some way that will become apparent
below) in each stratum and on the values of the variables used for matching
(in this case, the stratifying variables).

Retrospective likelihood
Conditional on {wi}, i= 1,…, n and S, the retrospective likelihood of the
observed data is written as:

LðWÞ ¼
Yn1
i¼1

PðGi; EijYi¼ 1;Si;WÞð Þwi
Yn

i¼n1þ1

PðGi; EijYi¼ 0;Si;WÞð Þwi

¼
Yn1
i¼1

X
ZirASðGiÞ

PðZir jYi¼ 1;Ei; Si;WÞPðEijYi¼ 1;Si;WÞ
0
@

1
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Yn
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0
@

1
A

wi

;

ð1Þ
where Ψ consists of the regression coefficients and the parameters associated
with the haplotype pair frequencies, which will be specified more explicitly
later. Note that conditioning on the case/control status (Y), stratifying variable
information and the weight for each person automatically takes care of
matching frequencies of cases and controls in all strata in the retrospective
(in contrast to prospective) likelihood formulation. Now we will specify the
model for each component of the likelihood. In the following, we suppress the
subscripts i and r for simplicity without causing ambiguity.

Modeling of P(Z|E,S,Y= 0). We start with modeling P(Z|E,S,Y= 0)= aZ|E,S, the
frequency of haplotype pair Z in the control population for a given E and S.
Suppose there are a total of m haplotypes and assume gene–environment (G–E)
dependence is only due to some of the stratifying variables and/or covariates,
defined as Cdep, a subset of {E,S}. That is, conditional on Cdep, G and E are
independent.22,23 Then we denote the haplotype frequencies in the control
population by f(Cdep)= (f1(Cdep),…, fm(Cdep)). We model aZ|E,S for a haplotype
pair Z= (zk, zk′) as follows:

aZjE;S ¼ PðZ ¼ ðzk; zk0 ÞjY¼ 0;E; SÞ
¼ PðZ ¼ ðzk; zk0 ÞjY¼ 0; CdepÞ
¼ dkk0df kðCdepÞ þ 2� dkk0ð Þð1� dÞf kðCdepÞf k0 ðCdepÞ

ð2Þ

where δkk′= 1(0) if zk= zk′(zk≠zk′), fk and fk′ are frequencies of zk and zk′ and
d∈ (−1,1) is the within-population inbreeding coefficient that captures excess/
reduction of homozygosity.24 For d= 0, the above expression is equivalent
to assuming Hardy–Weinberg Equilibrium (HWE) while other values of
d allow Hardy–Weinberg Disequilibrium (HWD).

We then model f(Cdep) using a multinomial logistic regression model to
allow G–E dependence.25 Let the mth haplotype be the baseline and assume
Cdep has L levels excluding baseline(s): Cdep= {C1,C2,…,CL}. For example, if
Cdep consists of two binary variables, then L= 2 with exclusion of baseline
category of each variable. Then we have

log
f kðCdepÞ
f mðCdepÞ

� �
¼ gk0 þ gk1C1 þ gk2C2 þ :::þ gkLCL

¼ gk Cdep

� �
; k¼ 1; 2; :::; m� 1: ð3Þ

Thus

f kðCdepÞ ¼
exp gk Cdep

� �� �
1þ Pm�1

j¼1
exp gjðCdepÞ

� �; k¼ 1; :::; m� 1;

f mðCdepÞ ¼ 1

1þ Pm�1

j¼1
exp gjðCdepÞ

� �:
ð4Þ
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Let γ denote an (m− 1)× (L+1) matrix with the (k, l)th element being γkl,
k= 1,...,m− 1 and l= 0,...,L. Combining Equations (2) and (4), we have now
fully specified aZ|E, S(γ, d).

Modeling of P(Z|E, S, Y= 1). Next let us consider P(Z|E, S, Y= 1)= bZ|E, S, the
frequency of haplotype pair Z in the case population for a given value of E and
S. We express bZ|E, S in terms of aZ|E, S and the odds of disease for a given Z, E
and S, θZ, E, S(=P(Y= 1|Z, E, S)/P(Y= 0|Z, E, S)):

bZjE; S ¼ PðZjE; S;Y¼ 1Þ ¼ PðY¼1jZ; E; SÞPðZ; E; SÞP
H

PðY¼1jH; E; SÞPðH E; SÞ ¼
yZ; E; SaZjE; SP

H

yH; E; SaHjE; S
; ð5Þ

where H is the set of all possible haplotype pairs and θZ, E, S is modeled
using logistic regression. We consider two different ways of modeling

θZ, E, S= exp(Xβ) with respect to the stratifying variables. They are included
as covariates either just as main effects (LBLc-GXE) or with additional
modeling of interaction effects of S with haplotypes (LBLc-GXE-GXS); ‘c’ in
LBLc represents complex sampling. More specifically, X is (1, XS, XE, XZ, XZXE)
in LBLc-GXE and (1, XS, XE, XZ, XZXS, XZXE) in LBLc-GXE-GXS. For each
model, β is the vector comprising the corresponding regression coefficients.
Here XZ= (x1, x2, …, xm− 1), where xk is the number of copies of haplotype zk
in haplotype pair Z with the mth haplotype assumed to be the baseline. XE and
XS consist of the usual dummy variables corresponding to E and S, respectively.
XZXE and XZXS are obtained by (scalar) multiplication of XZ and XE and XZ

and XS, respectively.

Modeling of P(Ei|Yi= 0, Si) and P(Ei|Yi= 1, Si). It remains to model
P(Ei|Yi= 0, Si) and P(Ei|Yi= 1, Si) in Equation (1). Assuming a saturated model
for P(E,S), P(E|Y,S)∝P(Y|E,S) without loss of information.26,27 Then using the
Bayes rule, we get the following:

PðEjY¼ 1; SÞpPðY¼ 1jE; SÞ ¼
P
H
yH; E; SaHjE; S

1þP
H
yH; E; SaHjE; S

; ð6Þ

and

PðEjY¼ 0; SÞpPðY¼ 0jE; SÞ ¼ 1

1þP
H
yH; E; SaHjE; S

: ð7Þ

Thus we can write the observed data retrospective likelihood in Equation (1) as:
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where Ψ= (β, γ, d).

Priors, posterior distributions and inference on association
These follow closely from LBL-GXE4 as elucidated briefly in the following.
Bayesian LASSO is used to regularize the regression coefficients βs by assigning
each of them a double exponential prior centered at 0 and variance
2=l2 : pðbjlÞ ¼ l

2 exp �ljbjð Þ; �NoboN. Such regularization helps in
weeding out the unassociated effects, making it possible for the associated ones,
especially those involving rHTVs, to stand out. The parameter λ controls the
degree of penalty. It is assigned a Gamma(a,b) hyper-prior with parametriza-
tion such that its mean is a/b. When a= b= 20, we obtain
SD(β)= 1.53, which corresponds to a realistic variability in odds ratios. For
γ parameters, we use a double exponential prior with hyper-parameter ν set to
be 0.5, which provides well-calibrated results as seen in our simulation study.
For d, we note that it is dependent on f(Cdep) as aZ|E, S should be non-negative.
Thus d4ff kðCdepÞ=ð1� f kðCdepÞÞ; k¼ 1;y;m� 1. As − 1odo1, we get
maxk �f kðCdepÞ= 1� f kðCdepÞ

� �� 	
odo1: Therefore, we set the prior for d to

be uniformly distributed in that range.
The posterior distributions of all parameters in Ψ are estimated using

Markov chain Monte Carlo (MCMC) methods. Finally, we test for significance
of each β coefficient by computing its 95% credible set (CS) using MCMC
samples from its posterior distribution. A 95% CS not covering 0 is considered
as an evidence for significance. Alternatively, Bayes factor (BF) 42 can be also
used to declare significance.1 For the KCS data analysis, we report both 95% CS
and BF.

RESULTS

Simulation study
One stratifying variable. We carry out simulation studies to investi-
gate the performance of LBL for complex sampling data. In this
subsection, we consider one binary stratifying variable S (= 0/1) with
prevalence pS=P(S= 1)= 0.3. There is also a binary environmental
covariate E (= 0/1) with prevalence pE|S= 0=P(E= 1|S= 0)= 0.3 and
pE|S= 1=P(E= 1|S= 1)= 0.7. There are three haplotype settings with 6,
9 and 12 haplotypes in a haplotype block as listed in Table 1. Each

Table 1 Simulation setup for one stratifying variable: OR under

association scenarios 1–6 and frequencies of haplotypes and

environmental covariate in each stratum

Setting Hap

Association scenarios (OR) Freq

1 2 3 4 5 6 S=0 S=1

1 01100 — — — — — — 0.35 0.25

10100 (R1) 3 3 3 3 3 — 0.01 0.005

11011 (R2) 3 (E) 3 (S), 3 (E) 3 (E) 3 (S) 3 (S),

3 (E)

— 0.01 0.02

11100 — — — — — — 0.03 0.28

11111 — — — — — — 0.05 0.17

10011 — — — — — — 0.55 0.275

E — — — — 1.5 — 0.3 0.7

S — — 3 — — — 0.7* 0.3**

2 01010 — — — — — — 0.02 0.1

01100 — — — — — — 0.18 0.32

10000 — — — — — — 0.13 0.03

10100 (R1) 3 3 3 3 3 — 0.01 0.005

11011 (R2) 3 (E) 3 (S), 3 (E) 3 (E) 3 (S) 3 (S),

3 (E)

— 0.01 0.02

11100 — — — — — — 0.15 0.03

11101 — — — — — — 0.06 0.11

11111 — — — — — — 0.05 0.15

10011 — — — — — — 0.39 0.235

E — — — — 1.5 — 0.3 0.7

S — — 3 — — — 0.7* 0.3**

3 00111 — — — — — — 0.03 0.11

01000 — — — — — — 0.01 0.03

01011 — — — — — — 0.03 0.07

01101 — — — — — — 0.03 0.09

01110 — — — — — — 0.22 0.06

10010 — — — — — — 0.11 0.05

10100 (R1) 3 3 3 3 3 — 0.01 0.005

11011 (R2) 3 (E) 3 (S), 3 (E) 3 (E) 3 (S) 3 (S),

3 (E)

— 0.01 0.02

11101 — — — — — — 0.13 0.05

11110 — — — — — — 0.18 0.08

11111 — — — — — — 0.05 0.15

10001 — — — — — — 0.19 0.285

E — — — — 1.5 — 0.3 0.7

S — — 3 — — — 0.7* 0.3**

Abbreviations: Freq, frequency; OR, odds ratio.
An OR followed by (S) is an interaction effect between that haplotype and stratifying variable,
an OR followed by (E) is an interaction effect between that haplotype and covariate, otherwise it
denotes the main effect. An OR of ‘— ’ denotes null effect (OR=1). Haplotype frequencies are
different for S=0 and S=1 groups.
*P(S=0), **P(S=1).

LBL for complex sampling data
Y Zhang et al

821

Journal of Human Genetics



haplotype block is formed by five SNPs with alleles labeled as 0 or 1.
There are two rHTVs, denoted as R1 and R2, in each block. Note that
there is G–S dependence as frequencies of haplotypes differ in the two
strata. This, in turn, induces G–E dependence as prevalence of E differs
across strata.
For creating association scenarios, we use various combinations of

the following effects: R1, R2XS, R2XE, S, and E, as listed in Table 1.
We also simulate a completely null model with all odds ratios (ORs)
set to be 1 (scenario 6).
To mimic a complex sampling design for generating data, we first

generate a population of cases and controls and then sample from it
using matching based on the stratifying variable. For a specific
combination of association scenario and haplotype setting, we generate
a population of 10 000 subjects in the following manner. For each
individual, first we simulate a stratifying variable value, say S using the
pS value. Then we generate an environmental covariate value, E, using
the pE|S value. Then we generate a phased haplotype pair, say Z, using
the frequencies given in Table 1 and assuming HWE (d= 0). Next, the
individual is assigned to be a case or control using a logistic regression
model: log(p/(1− p))=X β, where p is the probability that the
individual is case, and X= (1, XS, XE, XZ, XZXS, XZXE). The intercept
is calculated using a baseline prevalence of 0.1, that is, β0= log
(0.1/0.9). For the other β coefficients, we use the corresponding
ORs as listed in Table 1. We set the most frequent haplotype as the
baseline in the regression model. After the case/control status is
assigned, the phase information is removed and only genotypes are
retained. Once a population of 10 000 subjects is generated in this
manner, we obtain a sample from it as described next.
Suppose the numbers of cases and controls in the population of

Stratum h (h= 0, 1; h= 0 corresponds to S= 0 and h= 1 corresponds
to S= 1) are NCa

h and NCo
h . Correspondingly, let the number of cases

and controls in the sample of the Stratum h be nCah and nCoh . First, we

select all the cases in the population to be included in the sample for
each of the strata, that is, nCah ¼ NCa

h , h= 0, 1.19 For selecting controls,
to mimic the KCS data, we use differential sampling rates in the two
strata. In Stratum 0, the number of controls is set to be the same as the
number of cases, that is, nCo0 ¼ nCa0 ð¼ NCa

0 Þ. While in Stratum 1, we
select a simple random sample of size 2nCa1 controls, that is,
nCo1 ¼ 2nCa1 ð¼ 2NCa

1 Þ. In most situations, out of a population of size
10 000, we get a sample of size of 2200–3800 with the number of cases
varying between 1000–1500 (700–900 in Stratum 0 and 150–800 in
Stratum 1) depending on the scenario.
Next we calculate the population weights for sampled cases and

control in each stratum and rescale them. The rescaling is such
that the sum of weights for cases is the same as the sum of weights
for controls, as in the analysis of the KCS data reported by
Hofmann et al.14. Denote the rescaled weights of sampled cases and
controls in stratum h by wCa

h and wCo
h . As all cases are sampled, the

weight for a case is 1, that is, wCa
h = 1, h= 0, 1. Thus the sum of

weights for cases in the sample is the sample size of the cases

(NCa
0 þ NCa

1 ). The population weights of controls in stratum h is
NCo

h

nCo
h

.

For rescaling, we divide these population weights by their sum, that is,

ðNCo
0 =nCo0 Þ ´ nCo0 þ ðNCo

1 =nCo1 Þ ´ nCo1 ¼ NCo
0 þ NCo

1 and then multiply

by case sample size, that is, NCa
0 þ NCa

1 . Thus wCo
0 ¼ NCo

0 ðNCa
0 þNCa

1 Þ
nCo0 ðNCo

0 þNCo
1 Þ ¼

NCo
0 ðNCa

0 þNCa
1 Þ

NCa
0 ðNCo

0 þNCo
1 Þ and wCo

1 ¼ NCo
1 ðNCa

0 þNCa
1 Þ

nCo1 ðNCo
0 þNCo

1 Þ ¼
NCo

1 ðNCa
0 þNCa

1 Þ
2NCa

1 ðNCo
0 þNCo

1 Þ. Therefore, we

can see that if, we oversample the controls for one stratum, their
weights will be reduced. This can be clearly seen from the above
expressions of weights if the control-to-case ratio in the population is
constant across different strata. Note that all persons in a stratum have
the same weight, original as well as rescaled, and these are computed
only once for a given sample.

Figure 1 Powers (in gray shadow) and type I error rates of LBLc-GXE, LBLc-GXE-GXS, LBL-GXE-GXS and LBL-GXE for scenario 1 (OR.R1=3, OR.R2XE=3
and all other ORs=1). Each plot has three panels for main effects (bottom row), interactions of the corresponding haplotypes with S (middle row) and
interactions of the corresponding haplotypes with E (top row). 5% is marked by a gray horizontal dashed line. The haplotype frequencies are listed in
Table 1. A full color version of this figure is available at the Journal of Human Genetics journal online.
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We analyze each sample using LBLc-GXE and LBLc-GXE-GXS. For
comparison, we also apply LBL-GXE from Zhang et al.,4 which models
G–E dependence but ignores the stratifying variables (Note that, in

Zhang et al.,4 this method was referred as LBL-GXE-D; however, for
the sake of simplicity here we refer to it as LBL-GXE). Additionally,
we also analyze the data using a variation of LBL-GXE, referred to as

Figure 2 Powers (in gray shadow) and type I error rates of LBLc-GXE, LBLc-GXE-GXS, LBL-GXE-GXS and LBL-GXE for scenario 2 (OR.R1=3, OR.R2XS=3,
OR.R2XE=3 and all other ORs=1). Each plot has three panels for main effects (bottom row), interactions of the corresponding haplotypes with S
(middle row) and interactions of the corresponding haplotypes with E (top row). 5% is marked by a gray horizontal dashed line. The haplotype frequencies
are listed in Table 1. A full color version of this figure is available at the Journal of Human Genetics journal online.

Figure 3 Powers (in gray shadow) and type I error rates of LBLc-GXE, LBLc-GXE-GXS, LBL-GXE-GXS and LBL-GXE for scenario 3 (OR.R1=3, OR.S=3, OR.
R2XE=3 and all other ORs=1). Each plot has three panels for main effects (bottom row), interactions of the corresponding haplotypes with S (middle row)
and interactions of the corresponding haplotypes with E (top row). 5% is marked by a gray horizontal dashed line. The haplotype frequencies are listed in
Table 1. A full color version of this figure is available at the Journal of Human Genetics journal online.
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LBL-GXE-GXS, which includes the stratifying variables as covariates
but does not use sampling weights, that is, ignores the complex
sampling scheme. For each of these four methods, we use a total
number of 120 000 iterations with a burn-in period of 20 000
iterations to ensure satisfactory convergence.21 The total number of
replications in each simulation is 500. For each β coefficient, we
calculate the percentage of times (out of 500) that its 95% CSs does
not cover 0 to study the power or type I error rate.
Figures 1,2,3 and Supplementary Figures S1–S3 show the powers

and type I error rates for LBLc-GXE, LBLc-GXE-GXS, LBL-GXE-GXS
and LBL-GXE for association scenarios 1–6 (null model), respectively.
In scenario 1 (Figure 1), the performance of LBLc-GXE and
LBLc-GXE-GXS are comparable, detecting the main haplotype and
interaction effects with E with similar powers and keeping the type I
error rates under control, while LBL-GXE-GXS and LBL-GXE have
inflated type I error rates. In scenario 2 (Figure 2) where an interaction
effect with S is present in the data, LBLc-GXE-GXS continues to
performs well, while the other three methods, including LBLc-GXE,
have inflated type I error rates. In scenario 3 (Figure 3) where the
main effect of S is included in the data, LBLc-GXE, LBLc-GXE-GXS
and LBL-GXE-GXS control the type I error rates successfully while
LBL-GXE leads to inflated type I error rates. However, we should note
that the main effect of S detected by LBL-GXE-GXS here is not really
an indication of its power because this method detects the main effect
of S to be significant always irrespective of whether S has a true main
effect or not, as seen in Figures 1 and 2 and Supplementary Figures
S1–S3. In summary, LBLc-GXE controls type I error rates in situations
where there is no interaction between haplotype and stratifying
variable, while LBLc-GXE-GXS performs well in all scenarios. The
Supplementary Figure S3 for the null model (scenario 6) shows that
LBL-GXE-GXS and LBL-GXE lead to seriously inflated type I error
rates while LBLc-GXE and LBLc-GXE-GXS control these rates well.
We also explore scenarios 2 and 6 with pS= 0.15 and

pE|S= 0= pE|S= 1= 0.19 to mimic S and E to be race and smoking.
We use the fact that the prevalence of blacks in the United States is
about 15% and the prevalence of smoking among whites or blacks
in the United States is about 19%. Supplementary Figures S4 and
S5 show the corresponding results. The methods perform similarly as
before except that, with lower prevalences of S and E, LBLc-GXE and
LBLc-GXE-GXS have reduced power, as expected.
For scenario 2 and setting 1, we also analyzed the data using a

standard haplotype association method haplo.glm.28 Haplo.glm is
based on the generalized linear model and uses maximum likelihood
methods for inference. The results are reported in Figure 4 and
Supplementary Table S1, which show that haplo.glm has inflated type
I error rates.
Additionally, we investigate a different rescaling of the weights such

that the sum of the case (control) weights is equal to case (control)
sample size. We compare the two types of rescaling by applying
LBLc-GXE and LBLc-GXE-GXS to the data generated under setting 1
of scenario 2. The results of these two types of rescaling are
comparable as shown in Supplementary Table S2. We also examine
the methods for data generated under HWD by setting d= 0.1 in the
data simulation procedure for setting 1 of scenario 2. The relative
performances of the methods are similar to what we found earlier
under HWE. The detailed results are shown in Supplementary
Figure S6.

Two stratifying variables. We next conduct simulation studies using
two stratifying variables S1 (0/1) and S2 (0/1) to mimic race and sex.
We set the prevalence pS1=P(S1= 1)= 0.15 and pS2=P(S2= 1)= 0.5.

These two stratifying variables form four strata: Stratum 1 (S1= 0,
S2= 0), Stratum 2 (S1= 0, S2= 1), Stratum 3 (S1= 1, S2= 0),
and Stratum 4 (S1= 1, S2= 1). The binary environmental
covariate E has prevalence pE|S2= 0=P(E= 1|S2= 0)= 0.15 and
pE|S2= 1=P(E= 1|S2= 1)= 0.2, which mimics that prevalence of
smoking among females and males are about 15% and 20%,
respectively (http://kff.org/other/state-indicator/smoking-adults-by-
gender/). We consider six haplotypes and two types of G–S depen-
dence—dependence on S1 only (G–S1 dependence) or on both S1 and
S2 (G–S1–S2 dependence), as listed in Table 2.
The sample generation and weight calculation procedure is similar

to that in the ‘One stratifying variable’ subsection. Specifically, we
generate a population of size 10 000 and select all cases in the
population. In Strata 1 and 2, we select a simple random sample of
controls of the same size as the number of cases in the corresponding
stratum. In Strata 3 and 4, we select a simple random sample of
controls with size double of that of the cases in the corresponding
stratum. The total sample sizes range from 2000 to 2500 with roughly
1000 cases (about 400 each in Strata 1 and 2 and 100 each in
Strata 3 and 4).
Figure 5 shows the results for both G–S1 dependence and G–S1–S2

dependence. The relative performances of the methods are comparable
to what we observe in the case of one stratifying variable. That is,
LBLc-GXE-GXS has type I error rates well controlled while the other
three methods, including LBLc-GXE, have inflated type I error rates as
the simulation model includes non-null effects of both GXE and GXS.
The powers are lower under G–S1–S2 dependence compared with
G–S1 dependence as the former involves additional modeling.

Application to the KCS data
Following our motivation described in the Introduction section, we
study the NAT2 gene and its interaction with smoking. Deitz et al.29

report that seven SNPs (rs1801279, rs1041983, rs1801280, rs1799929,
rs1799930, rs1208 and rs1799931) explain 100% of the alleles detected
in NAT2. Out of these seven SNPs, six are available in the KCS data.
From them, a haplotype block consisting of the following five SNPs is
detected by Haploview:30 rs1041983, rs1801280, rs1799929, rs1799930,
and rs1208. We focus on analyzing this five-SNP haplotype block.
The KCS data include rescaled population weights; the rescaling is

such that the sum of the weights for the cases is the same as the sum of
the weights for the controls. We used these weights in our analyses to
account for complex sampling design. We consider smoking status as
a covariate with three levels: never smoking, former smoking, and
current smoking (consisting of occasional and regular current
smokers). Further, we adjust for all four stratifying variables: site
(Detroit, Chicago), age (o45, 45–54, 55–64, 65–74, ⩾ 75 years),
race (white, black), and sex following Li and Graubard19 and
Hofmann et al.14 Note that, at each site (city), both cases and controls
were recruited, and so using site as a stratifying variable along
with race can address population stratification due to geographical
location to some extent.
After removing subjects with missing genotype or smoking status,

there are 909 cases and 936 controls in the KCS data. Table 3 shows
some characteristics of these data. There is a higher proportion of
current smokers among cases than in controls for both whites and
blacks. More details about these data can be found in Hofmann et al.14

Haplotype frequencies as estimated using the hapassoc software31

based on maximum likelihood estimation are shown in Table 4.
They vary substantially between the two races as well as cases
and controls. These estimates are used as starting values of the
frequency (γ) parameters in the MCMC procedures.
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In our analysis, we set haplotype TTCAA as the baseline as it has
similar frequencies in the cases and controls among whites as well as
blacks. In addition, we assume that G–E dependence can be captured
through the dependence of haplotypes on race, that is, Cdep= {Race}.
As there are several haplotypes that are extremely rare, we run LBL for
a large number of iterations to ensure convergence and accurate
results. In particular, to monitor convergence, we run three chains
from three different starting points and make diagnostic plots and

calculate the R2 statistics.21 We run each chain for 300 000 iterations,
discard initial 100 000 as burn-in and combine the three chains to
obtain the posterior distributions.
The results are reported in Table 5. Both LBLc-GXE and LBLc-

GXE-GXS find an interaction effect of a rare haplotype CTCGG and
current smoking to be highly significant with BF4100. LBLc-GXE
also detects the main effects of CTCGG and current smoking to be
significant while LBLc-GXE-GXS finds only the latter to be significant.
Specifically, LBLc-GXE-GXS estimates the OR of the interaction to be
0.37 and the main effect of CTCGG to be null. Therefore, among
current smokers, the carriers of CTCGG have reduced odds of kidney
cancer compared with the carriers of the baseline haplotype TTCAA.
The two methods also detect a few other effects with their 95% CS
excluding 1; however, their corresponding BF values are small.
On the other hand, if the complex sampling design is ignored in the

analysis (that is, LBL-GXE-GXS or LBL-GXE are used for analysis), we
fail to detect the main effect of former or current smoking. Besides,
LBL-GXE-GXS, which models main and interaction effects
of stratification variables, even detects a protective effect of the
black race, which contradicts the fact that blacks are at an increased
risk of kidney cancer than whites.17 These contradictory results
illustrate the importance of accounting for complex sampling design
in the analysis.

DISCUSSION

Complex sampling schemes such as stratified sampling with frequency
matching are now increasingly used in practice. At the same time, in
the quest to dissect the etiology of common diseases, tremendous
efforts are being directed toward detecting rare variants and their
interactions with environmental covariates. Yet most of the current
genetic association methods do not take the design of data collection
into account, which can lead to biased results. Thus there is a pressing
need for methods, especially for rare variants, that can properly
account for complex sampling design. Here we adapted the LBL
framework to analyze data originating from complex sampling
schemes. As LBL is based on retrospective likelihood, it automatically
conditions on the matched frequencies of cases and controls in each
stratum once we condition on the stratifying variables. The differential
sampling rates across strata are accounted for using the (rescaled)
population weights.
When there is no interaction between stratifying variable and

haplotype, we found that LBLc-GXE provides considerable
powers and controlled type I error rates. However, it has increased

Figure 4 Powers (in gray shadow) and type I error rates of LBLc-GXE, LBLc-
GXE-GXS, LBL-GXE-GXS, LBL-GXE and haplo.glm (with and without S) for
scenario 2 (OR.R1=3, OR.R2XS=3, OR.R2XE=3 and all other ORs=1).
Each plot has three panels for main effects (bottom row), interactions of the
corresponding haplotypes with S (middle row) and interactions of the
corresponding haplotypes with E (top row). 5% is marked by a gray
horizontal dashed line. The haplotype frequencies are listed in Table 1.
A full color version of this figure is available at the Journal of Human
Genetics journal online.

Table 2 Simulation setup for two stratifying variables: OR and haplotype frequencies under two types of G–S dependence

Frequency

G–S1 dependence G–S1–S2 dependence

Hap OR Stra 1 Stra 2 Stra 3 Stra 4 Stra 1 Stra 2 Stra 3 Stra 4

01100 — 0.35 0.35 0.25 0.25 0.27 0.24 0.32 0.27

10100 (R1) 3 0.01 0.01 0.005 0.005 0.01 0.008 0.005 0.004

11011 (R2) 5 (S1), 4 (E) 0.01 0.01 0.02 0.02 0.01 0.007 0.02 0.013

11100 — 0.03 0.03 0.28 0.28 0.09 0.125 0.22 0.29

11111 — 0.05 0.05 0.17 0.17 0.15 0.11 0.07 0.049

10011 — 0.55 0.55 0.275 0.275 0.47 0.51 0.365 0.375

Abbreviations: OR, odds ratio; Stra, Stratum.
An OR followed by (S1) is an interaction effect between that haplotype and stratifying variable, an OR followed by (E) is an interaction effect between that haplotype and covariate, otherwise it
denotes the main effect. An OR of ‘—’ denotes null effect (OR=1). Under G–S1 dependence, haplotype frequencies are the same in strata 1 and 2 and also the same in 3 and 4. Under G–S1–S2
dependence, haplotype frequencies are different in different strata.
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type I error rates when such type of interaction is present. In such
situations, the method that additionally models the interaction term,
LBLc-GXE-GXS, performs well. On the other hand, the originally
proposed LBL method has high type I error rates even when
stratifying variables are included as covariates in the model. In
addition to inference on association, which is our main focus, we
also report in Supplementary Table S3 bias, standard errors and mean
squared errors of the point estimates of the regression coefficients

whose true OR41. For the null effects (OR= 1), these values are
smaller than the ones reported in the table and thus omitted
for brevity. As we can see from the table, these are all small for
LBLc-GXE-GXS. The same is true for LBLc-GXE except for the bias
and the mean squared errors of the R2XE effect when there are
two stratifying variables and there is also R2XS effect. In this case,
LBLc-GXE is not the correct model and thus gives inflated type I
errors, as already noted above.

Figure 5 Powers (in gray shadow) and type I error rates of LBLc-GXE, LBLc-GXE-GXS, LBL-GXE-GXS and LBL-GXE when there are two stratifying variables
S1 and S2, where pS1

=0.15, pS2
=0.5, pE|S2=0=0.15, pE|S2=1=0.2, OR.R1=3, OR.R2XS1=5, OR.R2XE=4 and all other ORs=1. Each plot has four

panels for main effects (bottom row), interactions of the corresponding haplotypes with S1 (second from bottom row), interactions of the corresponding
haplotypes with S2 (third from bottom row) and interactions of the corresponding haplotypes with E (top row). 5% is marked by a gray horizontal dashed line.
The haplotype frequencies are listed in Table 2. A full color version of this figure is available at the Journal of Human Genetics journal online.

Table 3 Characteristics distributions of the KCS data according to several variables

Cases (n=909) Controls (n=936)

White (n=652) Black (n=257) White (n=559) Black (n=377)

Age o45 78 (12.0%) 24 (9.3%) 65 (11.6%) 66 (17.5%)

45–51 142 (21.8%) 74 (28.8%) 117 (20.9%) 93 (24.7%)

55–62 208 (31.9%) 90 (35.0%) 167 (29.9%) 101 (26.8%)

65–74 158 (24.2%) 55 (21.4%) 152 (27.2%) 94 (24.9%)

⩾75 66 (10.1%) 14 (5.4%) 58 (10.4%) 23 (6.1%)

Sex Female 277 (42.5%) 91 (35.4%) 201 (36.0%) 191 (50.7%)

Male 375 (57.5%) 166 (64.6%) 358 (64.0%) 186 (49.3%)

Site Detroit 571 (87.6%) 191 (74.3%) 489 (87.5%) 309 (82.0%)

Chicago 81 (12.4%) 66 (25.7%) 70 (12.5%) 68 (18.0%)

Smoking Never 247 (37.9%) 84 (32.7%) 232 (41.5%) 134 (35.5%)

Former 225 (34.5%) 71 (27.6%) 216 (38.6%) 120 (31.8%)

Current 180 (27.6%) 101 (39.7%) 121 (19.8%) 123 (32.6%)

Abbreviation: KCS, US Kidney Cancer Study.
The percentages are based on unweighted counts.
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Table 4 Haplotype frequencies in the KCS data as reported by hapassoc

White Black

Overall Freq Case Freq Control Freq Overall Freq Case Freq Control Freq

CCCGA — — 0.0004 — — —

CCCGG 0.0140 0.0177 0.0095 0.0535 0.0486 0.0567

CCTAA 0.0004 0.0008 — — — —

CCTGA 0.0220 0.0208 0.0230 0.0113 0.0130 0.0101

CCTGG 0.3987 0.3948 0.4037 0.2387 0.2496 0.2313

CTCAA — — — 0.0020 0.0024 0.0017

CTCGA 0.2266 0.2284 0.2244 0.1407 0.1391 0.1418

CTCGG 0.0046 0.0055 0.0037 0.0908 0.0998 0.0847

TTCAA 0.3076 0.3014 0.3148 0.2670 0.2685 0.2661

TTCGA 0.0260 0.0307 0.0206 0.1891 0.1723 0.2004

TTCGG — — — 0.0069 0.0066 0.0071

Abbreviations: Freq, frequency; KCS, US Kidney Cancer Study.
The five single-nucleotide polymorphisms in this haplotype block are rs1041983, rs1801280, rs1799929, rs1799930 and rs1208.
‘—’ indicates the specific haplotype was not found.

Table 5 Results of analysis of the KCS dataa

LBLc-GXE LBLc-GXE-GXS

OR (95% CS) BF OR (95% CS) BF

CCTAA 1.55 (0.44, 9.44) 0.59 1.33 (0.51, 5.37) 0.40

CCTGA 1.07 (0.73, 1.59) 0.16 0.90 (0.53, 1.41) 0.19

CCTGG 0.99 (0.86, 1.15) 0.02 0.90 (0.72, 1.11) 0.12

CTCAA 1.07 (0.32, 3.84) 0.44 1.02 (0.37, 2.82) 0.33

CTCGA 1.12 (0.96, 1.34) 0.14 1.22 (0.96, 1.59) 0.35

CTCGG 1.81 (1.23, 2.67)b 17.06c 1.45 (0.84, 2.78) 0.56

TTCGA 1.10 (0.86, 1.42) 0.12 1.10 (0.75, 1.68) 0.17

TTCGG 0.85 (0.32, 1.91) 0.36 0.87 (0.32, 1.92) 0.31

CCCGG 1.11 (0.78, 1.61) 0.17 1.31 (0.81, 2.36) 0.37

Former smoking 1.04 (0.82, 1.34) 0.08 1.04 (0.83, 1.32) 0.07

Current smoking 1.45 (1.10, 1.92)b 3.72c 1.43 (1.09, 1.88)b 3.28c

CCCGG× former smoking 0.94 (0.59, 1.45) 0.18 0.96 (0.62, 1.46) 0.16

CCTAA× former smoking 0.90 (0.17, 3.64) 0.49 0.94 (0.29, 2.76) 0.35

CCTGA× former smoking 1.18 (0.76, 1.92) 0.26 1.11 (0.73, 1.75) 0.18

CCTGG× former smoking 1.03 (0.87, 1.22) 0.04 1.02 (0.86, 1.21) 0.03

CTCAA× former smoking 0.84 (0.16, 3.04) 0.49 0.90 (0.27, 2.43) 0.35

CTCGA× former smoking 0.81 (0.66, 1.00) 0.54 0.83 (0.67, 1.02) 0.36

CTCGG× former smoking 0.61 (0.37, 0.99)b 1.77 0.65 (0.39, 1.02) 1.20

TTCGA× former smoking 1.12 (0.83, 1.52) 0.15 1.07 (0.81, 1.45) 0.11

TTCGG× former smoking 0.92 (0.29, 2.53) 0.40 0.96 (0.37, 2.26) 0.30

CCCGG×current smoking 1.13 (0.74, 1.76) 0.21 1.17 (0.79, 1.84) 0.22

CCTAA×current smoking 2.50 (0.55, 28.67) 0.93 1.70 (0.58, 10.87) 0.54

CCTGA×current smoking 0.94 (0.55, 1.53) 0.21 0.91 (0.55, 1.43) 0.19

CCTGG×current smoking 1.15 (0.96, 1.39) 0.21 1.15 (0.96, 1.38) 0.19

CTCAA×current smoking 1.53 (0.45, 8.55) 0.58 1.30 (0.50, 4.84) 0.39

CTCGA×current smoking 0.95 (0.76, 1.17) 0.07 0.96 (0.78, 1.18) 0.06

CTCGG×current smoking 0.33 (0.18, 0.59)b 4100c 0.37 (0.20, 0.64)b 4100c

TTCGA×current smoking 0.90 (0.65, 1.22) 0.15 0.92 (0.68, 1.23) 0.12

TTCGG×current smoking 0.87 (0.27, 2.26) 0.40 0.90 (0.34, 2.01) 0.31

CCTGG×male 1.21 (1.03, 1.43)b 0.70

Abbreviations: BF, Bayes factor; CS, credible set; KCS, US Kidney Cancer Study; OR, odds ratio.
Interaction effects of haplotypes with stratifying variables shown only for significant effects.
The five single-nucleotide polymorphisms in this haplotype block are rs1041983, rs1801280, rs1799929, rs1799930 and rs1208.
aAdjusted for stratifying variables (age, sex, race and site).
b95% CS for OR excludes 1 or cBF42 (shown in bold).
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To examine the methods under realistic linkage disequilibrium
patterns and potential cryptic relatedness among subjects, we also
carried out simulations based on the haplotypes and results from the
KCS data analysis. We use the haplotype frequencies from Table 4
(separately for whites and blacks) and use race as the stratifying
variable (S) and smoking as a binary environmental covariate (E).
To mimic the prevalences of blacks in the United States and smoking
among the two races, we set pS= 0.15 and pE|S= 0= pE|S= 1= 0.19, as
used earlier in some simulations. The data are generated in the same
manner as described in the ‘Simulation study’ section. We consider
two scenarios—(1) Null with all ORs set to 1 and (2) Non-null with
OR= 1.4 for E and OR= 0.3 for interaction of haplotype CTCGG with
E, which are similar to those estimated in the KCS data analysis. The
results, presented in Supplementary Figure S7, are consistent with our
earlier simulation study results.
When applied to the KCS data, our method found current smokers

to be at an increased risk for kidney cancer, consistent with the
literature. Further, our finding of interaction between smoking
and NAT2 gene has been also reported in the literature. However,
this is the first time, to the best of our knowledge, that an interaction
with a specific rHTV has been implicated. Moreover, we found
that the current smokers carrying the rHTV CTCGG have reduced
odds of the disease compared with those with baseline haplotype.
Semenza et al.15 and Chow et al.17 state that kidney cancer risk is
higher for NAT2 slow acetylators than rapid acetylators among
smokers. The haplotype CTCGG appears to be of a rapid acetylator
type as per http://www.snpedia.com/index.php/NAT2, which might
explain its protective effect for current smokers. However, the finding
of this significant interaction effect appears to be novel and should be
investigated in future studies. Moreover, the population stratification
issue, in general, might need to be handled more carefully because
genetic background can sometimes vary even within the same race
and site.
As an alternative to LBLc-GXE, which models stratifying variables as

covariates, we also explored including stratifying variables in the
model by assigning to each stratum its own intercept32 denoted by
LBLc-GXE(I). We compared LBLc-GXE and LBLc-GXE(I) for a few
simulation settings when there is one binary stratifying variable and
they perform similarly. This is expected as the two models are actually
equivalent in this case. When there are two or more stratifying
variables and their effects are not additive, LBLc-GXE(I) may perform
better than LBLc-GXE; however, its power will suffer if the model is
additive given that it has a large number of intercept parameters.
The LBL methods are computationally intensive and hence are

more suited for zooming into genes/regions of interest implicated
previously by fast, typically single-SNP-based and genome-wide,
algorithms. LBLc-GXE-GXS is computationally slower than LBLc-
GXE as it has more parameters. For example, when there is one
stratifying variable, LBLc-GXE takes 915, 1379 and 1993 s to finish
120 000 iterations under settings 1–3 of scenario 2, respectively, while
the corresponding times for LBLc-GXE-GXS are 1095, 1694 and
2435 s. These computing times are for a 3.60 GHz Xeon processor
under Linux operating system with 15.55 GB RAM.
To summarize, we have extended the original LBL method to

incorporate complex sampling schemes, in particular, stratified
random sampling. Its main advantage stems from the fact that none
of the current haplotype association methods can handle both rare
variants and complex sampling design in the model. Another complex
sampling scheme that is gaining popularity is matching controls to
cases individually rather than with frequency matching (typically
referred as matched case–control). Although we focus on stratified

sampling design for a more concise discussion, the model for an
individually matched case–control design would be similar because the
retrospective likelihood will take care of conditioning on individual-
level matching, similar to frequency matching. LBL has been also
extended to handle longitudinal data33 and case–parent triad data.34

Thus LBL is now a comprehensive suite of rHTV methods, which can
be used for various types of data. We plan to extend the methods to
quantitative traits and extended family data as well as other sampling
designs such as nested case–control and case–cohort to further
increase LBL’s capability.

Software
The methods have been implemented in an R package LBL
available at:
http://www.utdallas.edu/Bswati.biswas and
http://www.stat.osu.edu/Bstatgen/SOFTWARE/LBL
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