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Detecting multiple variants associated with disease
based on sequencing data of case–parent trios

Chan Wang1, Leiming Sun1, Haitao Zheng2 and Yue-Qing Hu1

With the advance of next-generation sequencing technology, the rare variants join the common ones in explaining more

proportions of heritability. The coexistence of variants of common with rare, causal with neutral and deleterious with protective is

a norm and should be appropriately addressed. Some existing methods suffer from low power when one or more forms of

coexistence present, impeding their applications in practice. In this paper, for case–parent trios, pseudocontrols are constructed

using the nontransmitted alleles of the parents. The Kullback–Leibler divergence is utilized to measure the difference between

the distributions of variants in a genetic region for the affected children and pseudocontrols, and two nonparametric test

statistics KLTT and cKLTT are proposed. Extensive simulations show that they are robust to the opposite directions of the causal

variants and the amount of neutral variants, and have superiority over the existing methods when both rare and common variants

are involved. Furthermore, their efficiency is demonstrated in the application to the data from Framingham Heart Study.

Journal of Human Genetics (2016) 61, 851–860; doi:10.1038/jhg.2016.63; published online 9 June 2016

INTRODUCTION

Benefitted from the Human Genome Project, the genome-wide
association studies have identified hundreds of associated common
variants (minor allele frequency (MAF) ⩾ 1%) under the common
disease–common variant assumption.1 However, these variants explain
only 5–10% of the disease burden in the population.2,3 To uncover the
missing heritability, the common disease–rare variant (MAF o1%)
assumption was proposed.4,5 With the advent of next-generation
sequencing, many rare variants are detected to explain the missing
heritability, such as obesity and hypertension.6,7 The substantial
evidence shows that both the common disease–common variant and
the common disease–rare variant assumptions are valid, and the
susceptibility genes probably involve the functional variants that range
from rare to common.8 Furthermore, the functional genetic variants
may have opposite effects (deleterious and protective).9,10

The population- and family-based studies, having their own
advantages and disadvantages, are two main forms in genome-wide
association studies. Because of the intrinsic ease of collecting
large data sets, the former has wider popularity than the latter.11

However, family-based study has unique advantages, as it is robust
against population admixture and stratification, is able to identify
technological artifacts in the data and has potential to detect more
susceptibility loci.12 Furthermore, family-based study containing both
within- and between-family information has substantial benefits in
terms of multiple hypothesis testing.13 For the population-based
study, cases and controls are chosen randomly from affected and
unaffected populations, and all involved subjects are then independent.

Single-marker test is a primary approach to detect common variants;
meanwhile, some efficient and powerful methods such as the sequence
kernel association test14 and the adaptive sum of powered score test15

have been proposed accordingly for rare variants association study.
For family data, the transmission/disequilibrium test (TDT)16 and

family-based association test (FBAT)17 are two classic association
methods. De et al.18 collapsed the standard statistic of FBAT in a
genetic region and developed the test statistic specially for rare variants.
Ionita-Laza et al.19 proposed the family-based sequence kernel associa-
tion test for the family data that is parametric and needs not only
families with affected children, but also families with unaffected
children. He et al.20 incorporated combined multivariate and collapsing
(CMC),21 burden of rare variants test (BRT)22 and weighted sum
statistic (WSS)23 into the TDT framework and proposed the corre-
sponding ones. Based on sum of squared score test (SSU)24 and TDT,
Preston and Dudbridge25 developed score statistics for the trios, where
the haplotype phases were derived using BEAGLE.26 However, the
accuracy of phasing with BEAGLE has upper limit because of the
incomplete information contained in a given data set. In addition, Zhu
and Xiong27 incorporated the matrix of kinship coefficients into
CMC,21 and general T2 test to detect rare variants based on the family
data. Sha and Zhang28 and Choi et al.29 constructed the conditional
likelihood function of affected offspring given parents or siblings, and
proposed the likelihood ratio test to detect rare variants. However,
these methods would be vulnerable when some variants
are deleterious to the disease whereas some variants are protective.
Meanwhile, some existing methods are only applicable to rare variants,

1State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China and 2Department of Statistics, School of
Mathematics, Southwest Jiaotong University, Sichuan, China
Correspondence: Professor Y-Q Hu, State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, 2005 Songhu Road,
Shanghai 200438, China.
E-mail: yuehu@fudan.edu.cn
Received 17 March 2016; revised 2 May 2016; accepted 3 May 2016; published online 9 June 2016

Journal of Human Genetics (2016) 61, 851–860
& 2016 The Japan Society of Human Genetics All rights reserved 1434-5161/16
www.nature.com/jhg

http://dx.doi.org/10.1038/jhg.2016.63
mailto:yuehu@fudan.edu.cn
http://www.nature.com/jhg


and thus exclude commons variants. Hence, it is necessary to develop
methods handling common and rare variants simultaneously.
Like TDT, our test statistics are developed for the standard trios

(father, mother and an affected child). We utilize the Kullback–Leibler
divergence30,31 to measure the distributional difference of the trans-
mitted alleles and the nontransmitted alleles to the affected offspring
from parents across a genetic region harboring common and rare
variants with opposite effects, forming our first test statistic. Its
derivate is introduced based on the comparison of the counts of
transmitted and nontransmitted alleles at each site in this region.
We design extensive simulation settings to assess empirically the
performance of the proposed test statistics, where various levels of
linkage disequilibrium (LD) among variants are addressed. Meanwhile,
we compare them with some existing methods, of which some need to
infer the phase. The results show that the proposed methods are
almost more powerful than the existing methods in a range of
scenarios, and are recommended in the presence of both common
and rare variants with opposite effects. Finally, we apply the proposed
methods to analyze the Framingham Heart Study (FHS) data. Several
significant genes are detected, and most of them have been reported in
the literature. The gene function enrichment analyses via g:Profiler
(http://biit.cs.ut.ee/gprofiler/) further verify that these significant genes
have some associations with the hypertension.

MATERIALS AND METHODS
Assume there are m sites in a genetic region where both common and rare
variants may be present. For n case–parent trios, let F= (Fij)n×m, M= (Mij)n×m

and C= (Cij)n×m denote the genotype matrices for the fathers, mothers and
affected children, respectively, where Fij (Mij, Cij) being 0, 1 or 2 is the copy
number of minor allele at the jth site for the father (mother, child) in the ith
trio, respectively, i= 1,…, n and j= 1,…,m.
For every given case–parent trio and at each site, as one knows both parents

have one allele that is not transmitted to the affected child, these two
nontransmitted alleles could be combined to construct a pseudocontrol. As
nontransmitted alleles serve as controls that have the same population genetic
background as the affected children, more findings are anticipated from the
genotype comparison of affected children and pseudocontrols. Based on
above-mentioned allele coding scheme, Fij+Mij−Cij is actually the copy
number of the minor allele of the pseudocontrol at site j in the ith trio,
i= 1,…, n and j= 1,…,m. It is so plausible to regard Fij+Mij−Cij as the
genotype of the pseudocontrol. Consequently, we have a group of pseudocon-
trols having the same number as that of the affected children.
It is shown in the Supplementary Information that under the null hypothesis

of no association, Cij is independent of Fij+Mij−Cij for the same locus j
(Supplementary Table S1), and Cik is independent of Fij+Mij−Cij for highly
linked loci k and j (Supplemenetary Table S2). Hence, C is independent of
F+M−C under the null hypothesis. That is to say, genetic variants are present
randomly in the region of m sites for both affected children and pseudo-
controls. Thus, the distribution of genetic variants for affected children is
roughly the same as that for pseudocontrols. Some difference between the
genotypes of these two groups would be expected if the disease is associated
with one or more variants. In the following, we utilize the Kullback–Leibler
divergence30,31 to measure the difference between distributions of variants for
the affected children and pseudocontrols that forms our primary test statistic.
Let aj and bj denote the copy number of the minor allele at site j of the affected

children and pseudocontrols across n trios, j=1,…,m, respectively; that is,

aj ¼
Xn
i¼1

Cij; bj ¼
Xn
i¼1

Fij þMij � Cij

� �
:

Then we calculate the relative frequency of variant at site j among all m sites for
the respective affected children and pseudocontrols as follows,

f j ¼
aj þ 1Pm

j¼1 aj þ 1
� �; gj ¼

bj þ 1Pm
j¼1 bj þ 1

� �; j ¼ 1;y;m;

where the constant 1 is added to the counts to ensure fj40 and gi40 for every j.
It is natural to regard f= {f1,…, fm} and g= {g1,…, gm} as the distributions of
genetic variants for the affected children and pseudocontrols, respectively. For the
probability mass functions f and g having the same support, we calculate the
Kullback–Leibler divergence between f and g as

H f ; gð Þ ¼
Xm
j¼1

f j log
f j
gj
:

Similarly, we compute the Kullback–Leibler divergence between g and f as
Hðg; f Þ ¼ Pm

j¼1 gj log
gj
f j
.

Note that neither H(f, g) nor H(g, f) is symmetric about f and g. In order to
construct a symmetric measure of difference between f and g, we adopt the
following form:

KLTT ¼ 1

2
H f ; gð Þ þH g; fð Þ½ � ¼ 1

2

Xm
j¼1

f j � gj

� �
log f j � log gj

� �
; ð1Þ

that is our first test statistic, Kullback–Leibler divergence-based Test for Trios. It
is time to investigate some property of KLTT based on its form. As people have
already realized, some genetic variants may be deleterious to diseases whereas
some others may be protective. Roughly speaking, we could imply fj4gj for the
deleterious variant at site j and fjogj for the protective one that always lead to a
positive summand (fj− gj)(log fj− log gj) in the formula of KLTT. It is so
anticipated that KLTT has the potential to efficiently detect the variants of
positive and negative associations simultaneously. It is also noted from the sum
expression in Equation (1) that KLTT considers common and rare variants
together without the worry of contribution from one type overshadowing
the other.
In addition, we also build the test statistic using copy numbers fajgmj¼1 and

fbjgmj¼1 instead of ff jgmj¼1 and fgjgmj¼1 in the expression of KLTT. The
corresponding test statistic is

cKLTT ¼ 1

2

Xm
j¼1

aj � bj
� �

log aj þ 1
� �� log bj þ 1

� �� �
; ð2Þ

where the constant 1 is added to the counts to prevent 0 in the log operation.
It is observed from Equations (1) and (2) that KLTT measures the difference
between relative frequencies ff jgmj¼1 and fgjgmj¼1 whereas cKLTT measures the
difference between frequencies fajgmj¼1 and fbjgmj¼1.
In order to assess the performances of KLTT and cKLTT thoroughly, we

need to compare them with the existing methods in He et al.,20 Preston and
Dudbridge25 and Choi et al.29 in terms of detection power. Hence, we give a
brief description of these methods for ease of reference. He et al.20 incorporated
rare-variant association methods CMC,21 BRT22 and WSS23 into the TDT16

framework, where the phasing was performed with BEAGLE.26 Let clj= 1
(dlj= 1) if a minor-allele (major-allele) transmitted event occurs for parent l
with variant j, otherwise 0, l= 1,…, 2n, j= 1,…,m. They then constructed the
counterparts of b and c in the 2× 2 table of TDT based on CMC, BRT and
WSS, and adopted the form of TDT test (b− c)2/(b+c)16 to detect genetic
variants. He et al.20 indicated TDT-WSS performed well in most scenarios.
Hence, in this paper we compare our methods with TDT-WSS, in which
c ¼ P2n

l¼1

Pm
j¼1 clj=oj and b ¼ P2n

l¼1

Pm
j¼1 dlj=oj, where ωj is the estimated s.d.

of the MAF at locus j based on all pseudocontrols. Moreover, to be simple,
we generate haplotype data and the phases are known in simulation studies.
Preston and Dudbridge25 devised five new family-based score statistics based

on Pan.24 Let E= {Eij}n×m (H= {Hij}n×m) denote the count of minor (major)
alleles transmitted to the affected offspring from the parents who are
heterozygous at the jth variant for the ith trio, i= 1,…, n, j= 1,…,m. Score
vector is defined as U=XT1 and its variance–covariance matrix is then
V ¼ ðX � XÞTðX � XÞ, where X= (1/2)(E−H), X ¼ ðX1;y;XmÞ, Xj ¼ xj1
with xj ¼ 1

n

Pn
i¼1 xij, and 1 is the all 1 vector of length n. As done in Pan,24 the

family-based score statistics are proposed accordingly, denoted as Tscore, TSSU,
TSSUw, TUminP and Tsum. To save the space, TSSU=UTU, that was demonstrated
to have the outstanding performance among them,25 is selected to compare
with our proposed ones.
Choi et al.29 proposed a FAmily-based Rare Variant Association Test

(FARVAT) based on the quasilikelihood of whole families. Let Pj
i and Yi be
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the genotype and phenotype (0=unaffected; 1= affected) vectors in a
family i for variants j, respectively, and Pj ¼ ððPj

1ÞT ;y; ðPj
nÞTÞT , and

Y ¼ ðYT
1 ;y;YT

n ÞT , i= 1,…,n, j= 1,…,m. The score tests for the C-alpha-type
test (FARVATc) and the burden-type test (FARVATb) were devised from
E PjjY� � ¼ 2pj1N þ gjY and Var(Pj|Y)= σjjΦ, where pj is the MAF of variant j;
N is the total number of individuals in n families; 1N is the N×1 column vector
that consisted of 1; and Φ denotes the kinship matrix. FARVATb has an
apparent weakness and its performance deteriorates much when causal variants
have the opposite directions. Thus, FARVATc is chosen for the comparison.
For our proposed test statistic T (KLTT or cKLTT), the permutation

procedure is employed to evaluate its P-value. More specifically, the multisite
genotypes of the affected child and the pseudocontrol are exchanged with
probability 0.5 within each trio. This procedure is repeated B times, and we
obtain the corresponding test statistic Tb for b= 1,2,…,B. The P-value of the
test statistic is given as

p ¼
PB

b¼1 I TbZTð Þ
B

;

where I is the indicator function. Let Pr be the P-values, r= 1,2,…,R, for
R replications, the power (or type I error rate) for a given significance level α is
calculated as

power ¼
PR

r¼1 I prrað Þ
R

:

RESULTS

Simulation study
Simulation setting. Extensive simulation settings are designed to
evaluate the performance of KLTT and cKLTT, and to compare them
with some existing methods.20,25,29 To generate the genotypes of trios,
we first generate parents’ multisite genotypes based on a multivariate
normal distribution. To be specific, we generate a latent vector

Z= (Z1,…,Zm)
T from a multivariate normal distribution with mean

E(Zi)= 0, variance Var(Zi)= 1, i= 1,…,m, and covariance described
below. As we know, there may exist LD among genetic variants. To
take this into account, we adopt the AR(1) model and set the
correlation to be Corr(Zi,Zj)= ρ|i− j| if variants i and j are both causal
or both noncausal, otherwise the correlation is 0. We set ρ= 0, 0.5 and
0.9 to represent, to some extent, the no, moderate and strong LD,
respectively. Each Zi is then transformed to 0 (major allele) or 1
(minor allele) determined by the corresponding MAF. The details for
generating MAFs are given in the following section. This process
repeats twice, and two 0-1 vectors of length m are put together to form
the genotype of a parent. Once we have the genotypes of both parents,
we then generate child’s genotypes under Mendelian inheritance. Note
the recombination fraction between any two sites is 0 in this
framework. The following logistic regression model is used to
determine the disease status D of the child:

logit P D ¼ 1ð Þ ¼ b0 þ
Xm
j¼1

log ORj

� �
Gj;

where β0 represents the logit of phenocopy rate or background disease
prevalence, Gj is the genotype of the child at site j, ORj is the odds
ratio of the jth genetic variant that represents its size of effect on the
disease. In our simulation study we set m= 32 and β0= log(0.1),
corresponding to ∼ 9% phenocopy rate.
Table 1 shows the diversity of parameter settings. The MAFs of

rare variants (causal or noncausal) are randomly generated from the
uniform distribution U (0.001, 0.01); meanwhile, the MAFs of
common variants are from the uniform distribution U (0.01, 0.5).
To investigate the effect of different proportions of causal variants,
different proportions of rare variants, different proportions of causal

Table 1 Parameter settings and odds ratios in various association scenarios

Number of

CRVs CCVs NCRVs OR of CRVs OR of CCVs

12.5% Causal
4 0 28, 20, 12, 4a 3.5, 1/3, 3, 1/3.5 NA

3, 2, 1/3, 3 NA

2 2 28, 22, 14, 6 3, 1/3 1.3, 1/1.3

3, 1/2.5 1.5, 1/1.4

25% Causal
8 0 24, 16, 8, 0 3, 1/3, 3, 1/3, 3, 1/3, 3, 1/3 NA

3, 1/3, 3, 1/3, 2, 2, 3, 1/3 NA

6 2 24, 18, 10, 2 3, 1/3, 3, 1/3, 3, 1/3 1.3, 1/1.3

3, 1/3, 2, 2, 3, 1/3 1.3, 1/1.3

37.5% Causal
12 0 20, 12, 4, 0 3, 1/3, 3, 1/3, 2, 1/2, 2, 1/2, 3, 1/3, 3, 1/3 NA

3, 1/3, 3, 1/3, 2, 1/2, 1.4, 1.4, 2, 1/2, 3, 1/3 NA

8 4 20, 16, 8, 0 3, 1/3, 3, 1/3, 2, 1/2, 3, 1/3 1.3, 1/1.3, 1.1, 1/1.1

3, 1/3, 3, 1/3, 2, 2, 3, 1/3 1.2, 1/1.2, 1.1, 1.1

50% Causal
16 0 16, 8, 0 3, 1/3, 3, 1/3, 2, 1/2, 2, 1/2, 2, 2, 1/2, 2, 1/2, 3, 1/3, 3, 1/3 NA

3, 1/3, 3, 1/3, 2, 1/2, 1.8, 1.8, 1.3, 1.3, 2, 1/2, 3, 1/3, 3, 1/3 NA

12 4 16, 12, 4, 0 3, 1/3, 3, 1/3, 2, 1/2, 2, 1/2, 2, 1/2, 2, 1/2 1.3, 1/1.3, 1.1, 1/1.1

3, 1/3, 3, 1/3, 2, 2, 2, 2, 3, 1/3 1.3, 1/1.3, 1.1, 1.1

Abbreviations: CCV, causal common variant; CRV, causal rare variant; NA, not available; NCRV, noncausal rare variant; OR, odds ratio.
aThe total number of variants is 32. The number of NCRVs is 28, 20, 12 or 4.
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rare variants in causal variants and different proportions of positive
effect sizes on the statistical power of tests, we design a total of 62
combinations of the numbers of causal rare variants, causal common
variants (CCVs), noncausal rare variants and non-CCVs. See details in
Table 1, where the proportion of causal (rare and common) variants
in all 32 variants is 12.5, 25, 37.5 and 50%, and the proportion of rare
(causal or noncausal) variants is 100% (or 30/32× 100%, or
28/32× 100%), 75, 50 and 25% (or 12/32× 100%). For a given
number of causal variants, we let all causal ones are rare or a big part
are rare. For example, for the case of 16 causal variants (corresponding
to 50% causal at the bottom in Table 1), we let the ratio of the number
of causal rare variants to that of causal common ones be 16:0 and 12:4,
as shown in Table 1. For each of these two ratios, we consider two
types of the effect sizes; that is, log odds ratios. The first one is that
exactly 50% effect sizes are positive and the sum of all effect sizes is 0.
The other is that the number of positive effect sizes is bigger than the
number of negative and the sum of all effect sizes is positive. Based on

these parameter settings, we thus can evaluate comprehensively the
performance of our proposed and existing tests.
To evaluate the type I error rate, we alter all odds ratios in Table 1

as 1. In the simulation study, we generate 400 trios, and the numerical
results of powers of KLTT, cKLTT, TDT-WSS and TSSU are calculated
via permutation procedure. The empirical powers/the type I error
rates are evaluated based on 1000 replications and 200 permutations.
The nominal significance level is set as 0.05. FAVRATc in Choi et al.29

follows the mixed χ2 distribution, and its significance is calculated with
the Davies method.32

Simulation results. We first show the type I error rates of our
proposed two test statistics and three existing ones20,25,29 with various
LD structures in Supplementary Tables S3–S5 in the Supplementary
Information. It is observed that all empirical sizes are around the
significance level 0.05, and are well under control.

ρ

Figure 1 Powers of KLTT, cKLTT, TSSU, TDT-WSS and FARVATc against LD amount when the sum of all effect sizes is 0. Each of the 15 subfigures
represents a combination of numbers of causal rare variants, noncausal rare variants and non-CCVs; the total number of variants is 32 and the number of
CCVs is 0. The proportions of causal variants in the four row blocks are 12.5, 25, 37.5 and 50%, in the order from top to bottom, and the proportions of
rare variants in the four column blocks are 25, 50, 75 and 100%, in the order from left to right. CCV, causal common variant; FARVAT, family-based rare
variant association test; LD, linkage disequilibrium; SSU, sum of squared score; TDT, transmission/disequilibrium test; WSS, weighted sum statistic.
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The statistical powers of five tests with no CCVs are depicted in
Figure 1 (the sum of all effect sizes is 0) and Figure 2 (the sum of all
effect sizes is positive), with 2 or 4 CCVs in Figure 3 (the sum of
all effect sizes is 0) and Figure 4 (the sum of all effect sizes is positive).
We could make some comments based on these results. First, for the
situation in which the sum of log odds ratios is 0 (Figures 1 and 3),
KLTT and cKLTT have almost the same powers and are the most
powerful when both rare and common variants are involved. That is
to say, when the candidate genetic region harbors both (causal or
noncausal) rare and common variants, both deleterious and protective
variants, the tests KLTT and cKLTT could detect functional variants
powerfully. It is observed from Figure 1 that the powers of KLTT and
cKLTT have a more than 10% increase compared with that of
FARVATc in Choi et al.,29 are almost more than 1.5 times the powers
of TDT-WSS in He et al.,20 and more than 2 times the powers of TSSU

in Preston and Dudbridge,25 respectively. For example, in the situation
of 12.5% causal and 25% rare with no LD (ρ= 0), the powers of KLTT

and cKLTT are 43.0%, and the powers of FARVATc, TDT-WSS, and
TSSU are 37.7%, 14.6% and 7.3%, respectively (see Figure 1). The
similar conclusions could be drawn when the number of CCVs equals
2 or 4 (see Figure 3). KLTT and cKLTT have the parallel superiority
comparing with FARVATc, TDT-WSS and TSSU in the situation in
which the sum of log odds ratios is positive (see Figures 2 and 4).
Second, the superiority of KLTT over cKLTT is exhibited when the

LD level is strong (ρ= 0.9) and the sum of log odds ratios is positive
(see Figures 2 and 4). The smaller the number of rare variants or
causal variants is, the more superiority it exhibits. For instance, the
power of KLTT in the situation of 12.5% causal and 25% rare in
Figure 2 with ρ= 0.9 is 51.0%, whereas it is 34.7% for cKLTT. Third,
the powers of TSSU and TDT-WSS are surprisingly low for scenarios in
which both rare and common variants are involved. This may be
partially because these two methods do not distinguish between
common variants and rare variants and assign them the same weights
in the test statistics. Finally, the ratio of the number of noncausal rare

ρ

Figure 2 Powers of KLTT, cKLTT, TSSU, TDT-WSS and FARVATc against LD amount when the sum of all effect sizes is positive. Each of the 15 subfigures
represents a combination of numbers of causal rare variants, noncausal rare variants and non-CCVs; the total number of variants is 32 and the number of
CCVs is 0. The proportions of causal variants in the four row blocks are 12.5, 25, 37.5 and 50%, in the order from top to bottom, and the proportions of
rare variants in the four column blocks are 25, 50, 75 and 100%, in the order from left to right. CCV, causal common variant; FARVAT, family-based rare
variant association test; LD, linkage disequilibrium; SSU, sum of squared score; TDT, transmission/disequilibrium test; WSS, weighted sum statistic.
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variants to that of noncausal common ones almost does not affect the
powers of KLTT and cKLTT when the proportion of causal variants is
fixed (see each row block of Figures 1,2,3,4). Meanwhile, the powers of
FARVATc, TDT-WSS and TSSU decrease when the proportion of rare
variants decreases, especially TSSU. Note that TSSU is a sum of squared
score; that is, the difference between the counts of transmitted minor
alleles and nontransmitted ones that suffers from substantial loss of
power when both rare and common variants are present.
In scenarios involving only rare variants (100% rare, Figures 1

and 2), the winner goes to TSSU, followed by our proposed methods.
To be desirable, the gap between our proposed methods and the most
powerful method narrows with the increasement of LD amount.
For example, in situation of 12.5% causal (Figure 1) with no LD, the
powers of KLTT and TSSU are 40.7% and 60.2%, respectively, whereas
with strong LD they are 13.8% and 19.4%, respectively. Fortunately,

these scenarios of 100% rare are not norms in practice. Common
diseases, not like Mendelian diseases, are usually associated with many
genetic variants whose MAFs range from rare to common, even many
genes. Moreover, cKLTT is superior to KLTT in situation in which
all noncausal variants are rare (see the last column blocks in
Figures 1,2,3,4) that may be partially explained as follows. cKLTT
measures the difference between frequencies of copy numbers for the
affected children and pseudocontrols directly, and this is more
sensitive than the relative frequencies measured by KLTT.
It is also observed from Figures 1,2,3,4 that the LD level could affect

the powers of all testing methods. On the one hand, the increased
amount of LD between genetic variants with opposite effect directions
(see Figures 1 and 3) could reduce the powers of all test statistics. For
example, the powers of KLTT, cKLTT, FARVATc, TDT-WSS and TSSU

in the situation of 50% rare and 50% causal with no LD (ρ= 0) are

MIN% rare 50% rare 75% rare MAX% rare

0.2

0.4

0.6

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8
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0.4

0.6

12.5%
 causal

25%
 causal
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 causal
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 causal

0.0 0.5 0.9 0.0 0.5 0.9 0.0 0.5 0.9 0.0 0.5 0.9
ρ

P
ow

er

Test

KLTT

cKLTT

TSSU

TDT−WSS

FARVATc

Figure 3 Powers of KLTT, cKLTT, TSSU, TDT-WSS and FARVATc against LD amount when the sum of all effect sizes is 0. Each of the 16 subfigures
represents a combination of numbers of causal rare variants, noncausal rare variants and non-CCVs; the total number of variants is 32 and the number of
CCVs is respectively 2 and 4 in the first and last two row blocks, in the order from top to bottom. The proportions of causal variants in the four row blocks
are 12.5, 25, 37.5 and 50%, in the order from top to bottom; the proportion of rare variants is 50% and 75% in the second and third column blocks as
indicated; is respectively 25% and 12/32×100% in the top three subfigures and the bottom one within the first column block; and is respectively
30/32×100% and 28/32×100% in the top two subfigures and bottom two ones within the last column block. CCV, causal common variant; FARVAT,
family-based rare variant association test; LD, linkage disequilibrium; SSU, sum of squared score; TDT, transmission/disequilibrium test; WSS, weighted sum
statistic.
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83.3%, 83.9%, 81.8%, 34.1% and 7.7%, respectively, versus 19.9%,
17.1%, 10.3%, 12.2% and 6.3% respectively, with strong LD
(see Figure 1). Nevertheless, KLTT and cKLTT are still more powerful
than the existing three test statistics in these scenarios. To give a direct
interpretation, let us mimic two genetic variants in perfect LD having
opposite effect directions with the same absolute value of effect sizes,
and then their collective effect would become weak. Notice the kernel
part of TDT-WSS is the difference of two sums that perhaps implies
that their methods have low power to detect these two genetic variants.
Whereas the distributions of relative frequencies or copy numbers of
minor alleles for the affected children and pseudocontrols are
different, our proposed methods still have the deserved power. On
the other hand, the strong LD between genetic variants could increase
the powers in situation of 50% causal in Figure 4, where the number

of CCVs is 4 and the proportion of deleterious variants in all causal
ones is more than one half, the powers of 5 methods are increasing
when ρ is from 0.5 to 0.9. For example, the power of KLTT in
Figure 4 with 50% causal and 75% rare is 59.2% (ρ= 0.5) versus
79.6% (ρ= 0.9).

Real data analysis
In this section, we use the proposed methods to analyze FHS data.
FHS data are made available through the database of Genotypes and
Phenotypes (dbGap)33 supplied by the Genetic Analysis Workshop 16.
FHS participants are readily divided into three groups: the original
cohort, the offspring cohort and the third-generation cohort,
consisting of 5209, 5124 and 4095 participants, respectively. FHS data
contain 1538 families whose mean pedigree size is 10 and ranges
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CCVs is respectively 2 and 4 in the first and last two row blocks, in the order from top to bottom. The proportions of causal variants in the four row blocks
are 12.5, 25, 37.5 and 50%, in the order from top to bottom; the proportion of rare variants is 50% and 75% in the second and third column blocks as
indicated; is respectively 25% and 12/32×100% in the top three subfigures and the bottom one within the first column block; and is respectively
30/32×100% and 28/32×100% in the top two subfigures and bottom two ones within the last column block. CCV, causal common variant; FARVAT,
family-based rare variant association test; LD, linkage disequilibrium; SSU, sum of squared score; TDT, transmission/disequilibrium test; WSS, weighted sum
statistic.
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from 3 to 639. Owing to the existence of missing data, only
6849 participants have genotype data at 48 060 single-nucleotide
polymorphism markers over the 22 autosomes.
FHS data contain systolic blood pressure, diastolic blood pressure,

high-density lipoprotein cholesterol and other phenotypes. Here we
focus on hypertension that results from a complex interaction of genes
and environmental factors. Hypertension is usually defined as blood
pressure ⩾ 140 mmHg systolic or ⩾ 90 mmHg diastolic blood
pressure. As a prospective cohort study, FHS shows that the phenotype
of the original cohort and the offspring cohort are measured in four
examinations, whereas the third generation are only measured in one
examination. Therefore, each participant is classified as either affected
hypertension or not based on his/her highest measurement among all
available systolic or diastolic blood pressure to minimize medication
effect.
As KLTT (the results of simulation show that cKLTT is almost the

same as KLTT, we hence drop cKLTT here) is used to analyze trio
data, we first select affected participants and their parents, and then
exclude families with missing mothers or fathers. Notice that we select
only one trio from each pedigree to guarantee that all trios for our
analysis are independent. In all, 113 trios are involved in the analysis.
In this practice, we analyze all variants simultaneously in each gene.
If FHS data provide only one variant for a gene, we combine 9 variants
in its vicinity to form a region for analysis. The total number of genes
is 14 067. MAFs of all single-nucleotide polymorphisms in the genes
range from 0.0022 to 0.5 and the proportion of rare variants is 3.8%
(Supplementary Figure S1). Note that we exclude TDT-WSS in
He et al.20 as it needs the phase of every subject, which is not available
in FHS genotype data. To evaluate the significance of each gene,
we adopt 103 permutations. If the P-value is <10− 3, we increase the
times of permutation to 106.
Table 2 provides a summary of the top 10 significant results. Based

on literature review, we learn that most of these 10 significant
genes have been investigated in studies related to hypertension. For
example, SORBS1 genetic variations contribute to insulin resistance,
obesity, type 2 diabetes and hypertension.34 Gene EIF2AK1 is
located in chromosome 7p22 whose mutations cause the familial
hyperaldosteronism type II based on linkage analysis.35,36 Familial
hyperaldosteronism type II is an inherited form of hyperaldosteronism
associated with hypertension in most patients. The ACSM3 gene,
located on chromosome 16p12-13, encodes for enzymes catalyzing the

activation of medium chain length fatty acids. Association studies have
linked it to traits of insulin resistance syndrome and hypertension.37,38

Sharma et al.39 suggested that the 20-ketosteroid reductase activity of
the human AKR1C3 isozyme inactivates deoxycorticosterone that
binds to the mineralocorticocoid receptor with high affinity and
circulates at concentrations comparable to aldosterone. Severe
deoxycorticosterone excess as is seen in 17α- and 11β-hydroxylase
deficiencies causes hypertension, and moderate deoxycorticosterone
overproduction in late pregnancy is associated with hypertension.
In addition, gene function enrichment analysis is carried out by

using the g:Profiler, and the significant genes associated with
hypertension are exhibited in Supplemenetary Table S6. For example,
gene EIF2AK1 has negative regulation of hemoglobin biosynthetic
process and negative regulation of translational initiation by iron.
Atsma et al.40 showed that hemoglobin level is positively associated
with both systolic and diastolic blood pressures. Gene AKR1C3 has
negative regulation of isoprenoid metabolic process. Balakumar et al.41

indicated that the inhibition of synthesis of isoprenoids mediates the
upregulation of endothelial nitric oxide synthase, a key enzyme
involved in the regulation of cardiovascular function, by statins that
are widely used in the treatment of dyslipidemia and associated
cardiovascular abnormalities including hypertension.

DISCUSSION

The family-based study plays an important role in genome-wide
association studies. The members in the same family are homogeneous
in their genetic background and thus there are more chances to detect
susceptibility loci. The TDT-like methods detect genetic variants based
on the difference between the number of minor alleles transmitted to
the affected offspring from heterozygous parents and that not
transmitted. Under Mendelian inheritance and no association between
genetic variants and the disease, this difference would be close to 0.
Because of the low frequency of rare variants, some family-based
studies use collapsing/pooling method to enhance the signals and then
to improve the power. However, there are several limitations on the
existing approaches. First, a large proportion of variants in a genetic
region may be noncausal/neutral, and the inclusion of these noises
would definitely affect the detection power. Second, the causal variants
may have opposite directions of association with disease, and
collapsing would cancel out their collective effect, leading to low
power. Third, the genetic region usually consists of both common
and rare variants, and a threshold should be introduced to
differentiate them.
Trio, an affected child and two parents, is a standard form of family

data. In this paper, we use the multisite genotypes of trios to construct
the test statistics. For a trio, the two nontransmitted alleles from
parents are regarded as the genotype of a pseudocontrol. Hence, every
affected child has a paired pseudocontrol. There would be no
significant difference between the distribution of genetic variants of
affected children and that of pseudocontrols if all genetic variants in a
region have no association with diseases. We use Kullback–Leibler
divergence30 to measure the difference between these two distribu-
tions, and the test statistics are therefore constructed to detect the
functional genetic variants. Two test statistics KLTT and cKLTT are
proposed to detect the associations of variants, rare or common,
with common diseases. KLTT measures the difference between relative
frequencies of genetic variants for the affected children and pseudo-
controls; meanwhile, cKLTT measures the difference between
frequencies of copy numbers of variants for the affected children
and pseudocontrols directly. The proposed tests have some fulfilling
features. First, these methods have no assumptions on the association

Table 2 The top-10 significant results of FHS data analysis

P-value

Chr Gene MAF range KLTT TSSU FARVATc

10 SORBS1 0.1184–0.4561 o10−6 o10−6 o10−6

7 EIF2AK1 0.0720–0.0991 0.0002 0.0013 0.0015

10 AKR1C3 0.0568–0.4114 0.0006 0.0013 0.0002

16 ACSM3 0.0022–0.0796 0.0072 0.0279 0.0186

14 SERPINA1 0.1562–0.2708 0.0089 0.005 0.0019

9 TNC 0.0385–0.4038 0.0171 0.0042 0.0027

19 INSR 0.1087–0.3804 0.0192 0.0136 0.0068

22 MYH9 0.0482–0.2936 0.0205 0.1564 0.042

2 KYNU 0.0780–0.4358 0.0252 0.3473 0.1650

2 ALMS1 0.0147–0.3603 0.0487 0.6428 0.3401

Abbreviations: FARVAT, family-based rare variant association test; FHS, Framingham Heart
Study; MAF, minor allele frequency; SSU, sum of squared score.
KLTT is our proposed one; TSSU is in Preston and Dudbridge;25 and FARVATc is in Choi et al.29
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mode, and thus are model free. Second, they are applicable to the
genotype data, and there is no need to infer the phase by using some
software. Third, the proposed methods could handle both common
and rare variants simultaneously, and thus it is not necessary to set a
threshold to distinguish them. Moreover, they measure the difference
between distributions of variants for the affected children and
pseudocontrols that would have the deserved power when there are
genetic variants with opposite association directions.
We design extensive simulations to evaluate the performance of

KLTT and cKLTT, and to compare them with the existing
methods.20,25,29 The results of simulations show that KLTT and
cKLTT are almost the same and the most powerful in situations of
no or moderate LD when the candidate genetic region consists of both
rare and common variants. When involving only rare variants, TSSU in
Preston and Dudbridge25 is the best in some scenarios. It is desirable
that our proposed methods are the second most powerful and the
difference between the first and second highest powers decreases with
the increase of LD level. Among KLTT and cKLTT, the performance
of KLTT is superior to cKLTT when both rare and common variants
exist (see Figures 1 and 2); cKLTT is more powerful than KLTT when
only rare variants exist and the causal variants have opposite
association directions. In addition, the LD level could affect the
powers of all testing methods. The strong LD between genetic variants
with opposite effect directions could reduce the powers, whereas the
strong LD between genetic variants with the same directions could
increase the powers. Finally, we apply the proposed methods to
analyze the FHS data. Several significant genes are detected, and most
of them have been shown in association with hypertension by other
researches, such as genes SORBS1, EIF2AK1, ACSM3 and AKR1C3,
demonstrating the usefulness of our methods.
Notice that our current test statistics are applicable to the standard

trios. The extension to other kinds of family data is warranted. For
example, sibling pair data, parents with multiple affected children and
even a general pedigree. For the affected and unaffected sibling pair
data, although we could directly utilize KLTT and cKLTT to measure
the difference therein, the pedigree structure information is valuable
and should be taken into account in the construction of test statistic.
Finally, although the permutation procedure is computationally
extensive, it is flexible in accommodating complicated LD structure
among multiple variants. The recombinations among them, if existing,
should be addressed in future study.
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