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Evaluation of the evenness score in next-generation
sequencing

Konrad Oexle

The evenness score (E) in next-generation sequencing (NGS) quantifies the homogeneity in coverage of the NGS targets. Here I

clarify the mathematical description of E, which is 1 minus the integral from 0 to 1 over the cumulative distribution function

F (x) of the normalized coverage x, where normalization means division by the mean, and derive a computationally more efficient

formula; that is, 1 minus the integral from 0 to 1 over the probability density distribution f (x) times 1–x. An analogous formula

for empirical coverage data is provided as well as fast R command line scripts. This new formula allows for a general comparison

of E with the coefficient of variation (= standard deviation σ of normalized data) which is the conventional measure of the

relative width of a distribution. For symmetrical distributions, including the Gaussian, E can be predicted closely as 1–σ2/
2⩾E⩾1–σ/2 with σ⩽1 owing to normalization and symmetry. In case of the log-normal distribution as a typical representative

of positively skewed biological data, the analysis yields E≈ exp(− σ*/2) with σ*2= ln(σ2+1) up to large σ (⩽3), and E≈1–F(exp

(−1)) for very large σ (⩾2.5). In the latter kind of rather uneven coverage, E can provide direct information on the fraction of well-

covered targets that is not immediately delivered by the normalized σ. Otherwise, E does not appear to have major advantages over

σ or over a simple score exp(− σ) based on it. Actually, exp(− σ) exploits a much larger part of its range for the evaluation of

realistic NGS outputs.
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INTRODUCTION

Next-generation sequencing (NGS) techniques use random
(‘shotgun’) sequencing of the template DNA in order to cover all
‘targets’ with a sufficient number of sequencing reads, that is, to reach
a sufficient ‘coverage’. Accordingly, NGS always involves at least the
fluctuation of a Poisson process. The distribution of the coverage thus
cannot be entirely even but must have a variance that is at least as large
as the mean (as in case of a Poisson distribution). On top of that lower
bound, real NGS distributions show overdispersion and have variances
that are substantially larger than their means. Overdispersion is due to
various factors, including copy number variability of the template
DNA, for instance, or pre-NGS manipulations, such as selective
capturing of template DNA.
To assess the degree of inhomogeneity of NGS coverage

quantitatively, Mokry et al.1 elaborated on a consideration of Gnirke
et al.2 and introduced the ‘evenness score’ E. This score has found its
way into the NGS field. Very recently, for instance, Lelieveld et al.3

applied E in their comparison of exome sequencing and whole-
genome sequencing. Here I derive a computationally more efficient
formula for the calculation of E. Then I use that formula in a general
analysis, producing simple but close approximations. The latter
allow for a comparison of the evenness score with conventional
descriptors of the relative width of a distribution, such as the
coefficient of variation.

MATERIAL & METHODS AND RESULTS

The evenness score E
Mokry et al.1 developed the evenness score as a tool to describe the
dispersion of the coverage around the average coverage Cave. Their
idea is intuitive and proved useful for their study, but it has not been
extensively characterized mathematically. Here I show that the
explanation and derivation of the evenness score can be simplified
significantly, leading to a more efficient computation of the score and
to general insights into its relationship with more traditional statistical
measures. In order to simplify the explanation, it has to be reproduced
in the following paragraph. Readers asking for an immediate intuitive
understanding of the evenness score are referred to Figure 1 and may
then proceed directly to Equation (3).
Mokry et al.1 stated

E ¼ 100%
XCave

i¼1

Mi

CaveNTP
ð1Þ

where Mi ‘is defined as number of targeted positions with at least
coverage Ci, Cave is defined as the average coverage through all targeted
positions and NTP is defined as the total number of targeted positions.’
The introduction of the term Ci in this definition is an unnecessary
complication as the instruction of the sum in Equation (1) obviously
implies that Ci= i. Thus, as Mokry et al.1 stated, E equals 1 (= 100%)
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in case of completely uniform coverage of all targeted positions at a
level of Cave because in this case Mi/NTP= 1 for all i⩽Cave yieldingPCave

i¼1
Mi

CaveNTP
¼ PCave

i¼1
1

Cave
¼ 1. (Mokry et al.1 used the letter Pi instead

of Mi in Equation (1) which is avoided here as P usually indicates a
probability or relative frequency. Only after dividing Mi by NTP, a
probability results, that is, P(coverage⩾ i)=Mi/NTP.)
Mokry et al.1 also provided a version of Equation (1) for the

continuous case, that is, ‘E ¼ 100%
R 1
0 F ið Þdi, …where F (i) is the

fraction of positions with normalized coverage of at least C(i)/Cave’,
with ‘normalization’ meaning division by the mean. Again, the
definition is a little complicated as the reader needs to figure out that
C(i)/Cave= i. Moreover, the use of the letters i and F in this formula is
unfavorable as i has been applied in Equation (1) already, although
with a different meaning (!), and F usually relates to the left-sided
cumulative distribution function (from −∞ to x, see https://en.
wikipedia.org/wiki/Cumulative_distribution_function). Therefore, I
prefer to write

E ¼
Z1

0

G xð Þdx ð2Þ

with x≈ i/Cave and G(x)≈Mi/NTP, where i is defined as in Equation
(1), and G(x) is the fraction of positions with normalized coverage of
at least x. In Equation (2), I omitted the factor ‘100%’ as it equals 1
anyway. With increasing Cave, the residual difference between the
discrete and the continuous version of E declines. Mokry et al.1 used
the continuous version for a visual explanation of the evenness score
(see their ‘Figure 2’ and Figure 1 of the present paper). This
explanation implies that G(x) (that is, ‘F (i)’ in terms of Mokry
et al.1) is the complement of the cumulative distribution function (cdf)
of the normalized coverage. Hence G(x)= 1–F (x), because 1–G(x)
equals the fraction of positions with normalized coverage of at most x,
that is, the cdf for which I use the common descriptor F (x) here. In
case of a very even NGS result, almost all target positions have a
coverage close to the mean, so that the probability density distribution
(pdf) is restricted to the vicinity of the mean, the cdf is close to 0 for

xo1, and the evenness score E approximates 1� R 1
0 0di ¼ 1 or 100%.

Conversely, a coverage that is uneven with F (x)40 for xo1 results in
Eo1 (that is, o100%).
Thus, except for the expression in percentage, the evenness score E

of Mokry et al.1 is given by

E ¼
Z1

0

1� F xð Þdx ð3Þ

where F (x) is the cdf of the normalized coverage x= coverage/mean
coverage.
With f (x) being the related pdf where F xð Þ ¼ R x

�N f tð Þdt, that is,
FðxÞ ¼ R x

0 f ðtÞdt, as there is no negative coverage (f (t)= 0

for to0), a rather convenient expression can be derived from

Equation (3) using integration by parts: As
R 1
0 F xð ÞdxþR 1

0 xf xð Þdx ¼ ½xF xð Þ�10 ¼ F 1ð Þ ¼ R 1
0 f xð Þdx, Equation (3) can be

written as E ¼ 1� R 1
0 f xð Þdx þ R 1

0 xf xð Þdx. Hence,

E ¼ 1�
Z1

0

ð1� xÞf xð Þdx ð4Þ

For the discrete case with x≈ i/Cave and f (x)≈ ni/NTP, the analogous
formula is

E ¼ 1�
XCave

i¼0

ðCave � iÞni
CaveNTP

ð5aÞ

where NTP and Cave are defined as in Equation (1) as the total number
of targeted positions and the average coverage, respectively, while ni is
the number of targets that are covered with exactly i reads (that is, i is
the non-normalized coverage). Equation (5a) can be transformed to

E ¼ 1� 1

NTP

X
1pjpNTP;C jð ÞpCave

1� C jð Þ
Cave

� �
ð5bÞ

where the condition ‘1⩽ j⩽NTP, C(j)⩽Cave’ guarantees that the index
of the summation runs through all target positions j whose coverage
C(j) is not larger than the average coverage. As each of these positions
occurs exactly once, Equation (5b) does not have a weighing factor
comparable to ni in Equation (5a) where i denotes coverage level
instead of position. For a direct derivation of Equations (5a and 5b),
from Equation (1), see Supplementary Material A and B and
Supplementary Figure S1. As Cave is usually not an integer, there
might be a small deviation between the values calculated by Equation
(1) and Equations (5a and 5b). The deviation is small for Cave410 but
may be considerable if Cave is of order ⩽1. The difference vanishes if
Cave is rounded to the next integer. With Equations (5a and 5b), the
computation time to calculate E is a linear function of the number of
NGS reads as each read is addressed only once in the summation over
(Cave–i)ni, whereas Equation (1) requires computational time that
increases as a quadratic function of the number of reads as each Mi

represents a summation itself. For theoretical considerations (see
below), Equations (4, 5a and 5b) are also more useful than
Equations (1–3) because for various distributions, including the
Gaussian normal distribution, F (x) cannot be provided in closed
form. Concerning computational efficiency, the situation is then
similar to the discrete version, as Equation (4) involves only one
numerical integration, while the calculation according to Equation (3)
implies the numerical integration of numerical integrations.
Commands to calculate E according to Equations (4, 5a and 5b) on

the R command line or as parts of R programs are as follows (see

Figure 1 Explanation of the evenness score E (shaded area) according to
Mokry et al.1 (also see their Figure 2b). If the coverage is homogeneous, its
pdf (probability density function) is narrow and close to the mean of the
normalized coverage at x=1. Then the shaded area approximates a size of
1 or 100%. E is calculated as

R 1
0 1� F xð Þdx ¼ 1� R 1

0 F xð Þdx ¼
1� R 1

0 ð1� xÞf xð Þdx (see derivation of Equation (4)) where f(x) is the pdf
and F(x) is the cumulative distribution function (cdf).
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Supplementary Material B for a detailed explanation): In case of
empirical (that is, discrete) data, let D be a vector that contains the
data as a sequence of numbers representing the coverage of each of the
targets. If this sequence is the column k of a table T, use the command
‘D=T[,k]’ to produce D. Then implementation of Equation (5b) in R
yields E by the command line script

C¼round mean Dð Þð Þ;D2¼D DpC½ �;E¼1� length D2ð Þ�sum D2ð Þ=Cð Þ=length Dð Þ; E
where Cave is rounded to the next integer (which only has a substantial
effect for data whose non-normalized Cave is very small; that is, of
order ⩽ 1). This command also works after normalization of the data.
For operations with a theoretical distribution f (x) of a continuous
normalized random variable, Equation (4) can be implemented in R as

E¼integrate function xð Þ 1�xð Þ�f xð Þf g; lower¼0; upper¼1ð Þ$value; E
where ‘f (x)’ has to be replaced by the specific pdf.
In the following, I derive approximations of the evenness score E,

especially in terms of the distribution parameter σ. I also consider
alternative scores such as e− σ, which is restricted to the interval between
0 and 1 by definition and thus qualifies for scoring in percentage.

E and σ in case of a symmetrical pdf
As coverage always is positive, with f (x)= 0 for xo0, and
because normalization implies μ= 1, the variance is given by
s2 ¼ RN

�N f xð Þ x � mð Þ2dx ¼ RN
0 f xð Þ x � 1ð Þ2dx. With both f (x)⩾ 0

and (x–1)2⩾ 0, the variance is s2 ¼ k2
R 1
0 f xð Þ 1� xð Þ2dx where

k241. As (1–x)2⩽ 1–x for 0⩽ x⩽ 1, Equation (4) implies σ2/k2⩽ 1–E,
which yields an upper limit of E. In analogy to k2, a constant k0 can be
defined with 1 ¼ k0

R 1
0 f ðxÞdx, where k041 since

R m
0 f ðxÞdxo1

because f (x) is a pdf. To derive the lower limit of E, apply Jensen’s
inequality for convex functions such as (x–1)2 (see Supplementary
Material C) yielding

R 1
0 1� xð Þ2k0f ðxÞdxXðR 1

0 ð1� xÞk0f ðxÞdxÞ2.

With Equation (4), this is equivalent to k0σ
2/k2⩾ (k0(1–E))

2. Hence,

1� s2

k2
XEX1� sffiffiffiffiffiffiffiffiffi

k0k2
p ; with k0 > 1; k2 > 1 ð6Þ

The constants k0 and k2 depend on the form of the distribution; k0 is
associated with the relation of median m and mean μ= 1. If 14m,
then

R 1
0 f ðxÞdx > 0:5, and k0o2. In case of symmetrical pdfs,

m= μ= 1 and k0= 2. Moreover, symmetry implies s2 ¼ R 2
0 f xð Þ

1� xð Þ2dx ¼ R 2
0 f xð Þj1� xj2dx ¼ 2

R 1
0 f xð Þ 1� xð Þ2dx, and there-

fore, k2= 2. Hence,

1� s2=2XEX1� s=2 for symmetrical pdfs ð7Þ
(see Figure 2 for some examples). Inequality(7) makes sense only if the
normalized standard deviation σ, which equals ðR 2

0 f xð Þ x � 1ð Þ2dxÞ1=2
for symmetrical pdfs, ranges between 0 and 1. Indeed, this can be
shown using the extreme types of symmetrical pdfs: If f (x)→ 0 for
x≠1, we get σ→ 0, whereas if f (x) has a U-form, with f (x)→ 0 for
x(x–2)≠0, thus maximizing the distance of the random variable from
the mean, we have σ→ 1 as (1–x)2 equals either (1–0)2 or (1–2)2. For
these two extremes, E is precisely determined by inequality(7), being 1
and 0.5, respectively. The relative error in estimating E by inequality
(7), that is, by the mean of the limits (1–σ/2) and (1–σ2/2), must
be smaller than half of their difference divided by the lower limit,
0.5(σ/2–σ2/2)/(1–σ/2). The maximum of the latter term is found at
s ¼ 22

ffiffiffi
2

p
E0:59 and is only 0.086. Analyzing realistic distributions

(see below) yields relative errors even much smaller than that.
Among the pdfs that are symmetrical and unimodal (for example,

bell-shaped), the pdf with the maximal σ is realized by an approximate
rectangular distribution over the interval [0, 2] with f (x)= 0.5 for
0⩽ x⩽ 2, and f (x)= 0 otherwise. A simple calculation yields
s ¼ ffiffiffiffiffiffiffi

1=3
p ¼ 0:58, 1–σ/2= 0.71, 1–σ2/2= 0.83, E= 0.75, a relative

error in estimating E by inequality (7) of ((1–σ/2+1–σ2/2)/2–E)/E= 0.03,
and e− σ= 0.56. More so than the rectangular, the triangular distribu-
tion might serve as a semi-realistic but still analytically treatable model
of a symmetrical and unimodal pdf. For a triangular pdf with its base
on the interval [1–b,1+b],b⩽ 1, and, consequently, peak height of 1/b,
one gets s ¼ b=

ffiffiffi
6

p
p0:41, e− σ⩾ 0.66, 1–σ/2⩾ 0.80 and

E ¼ 12b=6 ¼ 12s=
ffiffiffi
6

p
X0:83. Again, E can be predicted rather well

by inequality(7) with a relative error of o0.028. Of note, the range of
E, that is, the interval [0.83, 1], is only half as large as the ranges of σ
or e− σ. Even more realistic, of course, than a triangular pdf is the
assumption of a Gaussian normal distribution. The latter is reasonably
symmetrical as long as the standard deviation is small with σ≪μ (see
Figure 2 and Supplementary Material F for the effect of truncation at
x= 0). If the coverage results from a random production of reads as in
a Poisson process, its distribution is approximately Gaussian with a
variance before normalization that is as large as the mean coverage.
Assuming a mean coverage of 100 before normalization, the standard
deviation after normalization then is

ffiffiffiffiffiffiffi
100

p
=100 ¼ 0:1. Numerical

integration using R (see Supplementary Material B) yields E(σ) as 0.96,
0.92 and 0.84 for σ being 0.1, 0.2, and 0.41, respectively, which is
almost the same as in case of the triangular distribution (Figure 2).
One might think that E⩾ 1–σ/2 (see inequality(7)) also applies to all

positively skewed normalized distributions, that is, normalized pdfs
with positive third moment. However, this may not necessarily be
the case. Defining kn ¼

RN
0 f xð Þj1� xjndx= R 1

0 f xð Þj1� xjndx with
n∈ {0,1,2,3,…} we get k0 and k2 according to their definitions in the
derivation of inequality(6), k1= 2 owing to the definition of the mean
μ, which equals 1 after normalization and k342 in case of positive
skewness. For E⩾ 1–σ/2 to be true, the product k0k2 needs to be 44
(see inequality(6)). Proofs in that matter are not trivial. For ‘positively

Figure 2 Evenness scores (E) of some symmetrical distributions as functions
of the coefficient of variation, that is, of the standard deviation (σ) after
normalization by division by the mean. Note that E is well predicted by the
average (dashed line) of the upper (1–σ2/2) and lower limits (1–σ/2) as given
by inequality(7). Because of the normalization, the base length of the
triangular and the rectangular distribution cannot be 4 2, so that the
maximal σ is 1=

ffiffiffi
6

p
¼ 0:408 and 1=

ffiffiffi
3

p
¼ 0:577, respectively. The Gaussian

normal distribution necessarily is truncated at 0, which inflicts increasing
skewness with increasing σ. Interestingly, the normalized left-truncated
Gaussian distribution also has a maximal σ, which equals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=221

p ¼ 0:756
(see Supplementary Material F). As the figure shows, the E score of the
distribution even then is well predicted by inequality(7).
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slanted’ distributions4 (that is, pdfs for which f (μ+x)–f (μ− x) is not
identically zero and changes sign in x40 at most once and from
negative to positive, which include the Pearson family and the log-
normal distribution) it can be derived, using the reasoning of
MacGillivray,5 that k242 and 24k041 (not shown). However,
this is not very helpful. For the log-normal distribution, better
approximations are derived in the following section.

The evenness score of the log-normal distribution
Measurements on biological entities usually are positive with a
maximum at x40 and a tail towards higher values. As such, their
distributions resemble a log-normal distribution (see Limpert et al.6

for a review). This type of distribution has been found in a great
variety of cases, including gene expression,7 telomere length,8 neuronal
activity,9 fecundity10 or time-to-event duration (for example,
incubation time) of infectious and other diseases,11,12 for instance,
although log-normal genesis (multiplicative interaction of many
random effects) cannot always be demonstrated perfectly. The pdf
of the coverage in NGS may also have log-normal appearance
(Figure 4): The rolling circle technique of Complete Genomics or
the use of selective capturing of targets as in exome sequencing
produce such distributions, whereas whole-genome sequencing with
the Illumina technique results in rather symmetrical distributions.13,14

Therefore, I examined the evenness score E(σ) of the log-normal
distribution (see Figure 3).
The log-normal distribution15 is the density of a variable whose

logarithm ln(x) has a Gaussian normal distribution No(μ*, σ*). Being
the first derivative of the cdf with ∂ln(x)/∂x= x− 1, the log-normal pdf
thus is

f xð Þ ¼ 1

xs�
ffiffiffiffiffi
2p

p e
� lnðxÞ�m�ð Þ2

2s�2 ð8Þ

where μ* and σ* now are form parameters only that relate to mean
and variance of x as m ¼ eðm

�þs�2=2Þ and s2 ¼ m2 eðs
�2Þ21

� �
,

respectively.16 Normalization (division by the mean) conserves the
log-normal form of a distribution, since ln(x/μ)= ln(x)–ln(μ) implies
that ln(x/μ) has the Gaussian normal distribution No(μ*–ln(μ),σ*) if

the distribution of ln(x) is No(μ*,σ*). For normalized coverage with
μ= 1, the relation of σ* and σ simplifies to

s�2 ¼ ln s2 þ 1
� � ¼ �2m�; ifm ¼ 1 ð9Þ

The log-normal distribution is increasingly skewed with increasing σ
(see Figure 3a), whereas it approximates a Gaussian normal distribu-
tion No(μ, σ) if σ→ 0 (see Supplementary Material D for a proof of
the latter tendency). In case of small σ, the evenness score of a
normalized log-normal distribution thus can be estimated by inequal-
ity(7) (see Figures 3b and 4b). First-order approximation of Equation
(9) in the vicinity of ln(1) yields σ*2= ln(1+σ2)≈ σ2, that is, σ≈ σ*, so
that inequality(7) translates to 1–σ*2/2⩾E⩾ 1–σ*2 for σ≈ σ*→ 0.
With first-order approximation in the vicinity of e0 as e0+Δt≈ 1+Δt,
this results in e�s�2=2XEXe�s�=2. Figures 3b and 4 and
Supplementary Figure S2 show that EEe�s�=2 also holds beyond the
region of small σ. At σ= 1.3 where σ*= 1, the values of E= 0.62 and
e− 1/2= 0.61 still are almost identical. Indeed, the approximation e− σ*/2

is valid up to σ= 3 (that is, σ*= 1.5), with a maximal absolute error
of 0.02,

EEe
�s�
2 for normalized log-normal distribution with sp3 ð10Þ

To derive an approximation for even larger σ, use y= ln(x), which,
by definition, has a Gaussian normal distribution No(μ*,σ*). Sub-
stituting x by y, that is, FLogNo(x) by FNo(y) in Equation (3),
yields E ¼ 1� R 0

�N FNo yð Þeydy, taking into consideration that
dx= ∂x/∂ydy= eydy. The value of

R 0
�N FNo yð Þeydy is determined by

the region close to the origin as the factor ey is approaching 0 for
negative values of y beyond that region. For large σ (and, therefore,
large σ*), FNo(y) approximates its maximum (= 1) in that region so
that its graph becomes flat and rather linear, because its mean μ*
moves away from the origin with the square of its standard deviation,
μ*= σ*2/2, according to Equation (9). Hence, for large σ, FNo(y) can
be replaced by a low-grade Taylor series approximation. The Taylor
series can be expressed as FNo 0ð Þ þPN

n¼1ð∂n�1f No 0ð Þ=∂xn�1Þyn=n!,
considering that fNo is the first derivative of FNo. With
n! ¼ RN

0 yne�y dy ¼ R 0
�N ð�1Þnyneydy, one gets E ¼ 1� FNo 0ð Þ þPN

n¼0ð∂nf No 0ð Þ=∂xnÞð�1Þn (see Supplementary Material E for a

Figure 3 (a) Assumed log-normal probability density functions (pdfs) of the normalized coverage x for different values of the standard deviation σ. (See the
main text for the relation between σ and the form parameter σ* of the log-normal pdf.) As normalization means division by the mean here, the mean μ of x is
always 1. Therefore, the coefficient of variation (= σ/μ) equals σ. Note that for σ→0, the pdf approximates the form of a Gaussian normal distribution while
with increasing σ the skewness also increases. (b) Evenness score E(σ) and alternative scores (e− σ, e− σ*,e− σ*/2 and 1–F(x,σ)) for normalized log-normal
distributions with varying σ. The cumulative distribution function F(0.2,σ) quantifies the fraction or targets with a coverage of o0.2 (that is, ⩽20× if the
mean of the non-normalized random variable is 100× ) depending on σ. Note that E(σ) is well approximated by e− σ*/2 up to large σ (=3) and by 1–F(e−1,σ)
for very large σ (⩾2.5).
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detailed derivation). Stopping that series at n= 0 yields E≈ 1–(FNo(0)
+fNo(0)(−1)). The term in the brackets amounts to a first-order Taylor
approximation of FNo(y) for y=− 1. Returning to the log-normal
distribution of x with x= ey then results in E≈ 1–F (e− 1). As shown in
Figure 3b, this approximation is rather good for very large values of σ.
For σ⩾ 2.5, its maximal absolute error is at most 0.02. Hence,

EE1� Fðe�1Þ for normalized log-normal distribution

with sX2:5 ð11Þ
As F (e− 1)=F (0.38), which is the number of reads with a normalized
coverage of at most 0.38, E here indicates the number of reads with a
normalized coverage of at least 0.38. Figure 3b shows that 1–F (e− 1) is
quite parallel to 1–F (0.2); in case of a 100× average coverage, which is
frequently aimed for in NGS projects, F (0.2) indicates the limit of
20× that is usually considered as the minimal coverage necessary for
reliable mutation detection. As such, for NGS projects with very large
variance of the coverage, E may serve as useful and more or less direct
indicator of the fraction of sufficiently covered targets.

DISCUSSION

The evenness score is used in NGS to quantify the homogeneity of
target coverage with sequencing reads.1,3 As such, it is a measure of the
relative width of a distribution, with the coverage being the distributed
variable. Its use can be recommended only if it has advantages
compared with the coefficient of variation, which is the parameter
conventionally applied for this purpose. Here I have performed that
comparison. To do so, I used the evenness score in its continuous
version, which assumes a normalized random variable (that is, having
a mean μ of 1). Therefore, the evenness score E was compared with

the standard deviation σ, as σ equals the coefficient of variation if μ
equals 1.
At first, I clarified the mathematical definition of E and derived a

computational more efficient version (see Equation (4)), which then
was also translated to the non-normalized, discrete case of empirical
coverage data (see Equations (5a and 5b)). Using this version, the
calculation of E avoids double summations thus making it now about
as fast as the calculation of σ. As most software applications still do not
contain a built-in routine for the calculation of E, I have provided
short R commands that will be easily translatable to analogous
commands in other programming languages.
Besides the unconventionality of E, its definition might appear to

imply another disadvantage: Since the integration
R 1
0 ð1� xÞf xð Þdx in

its calculation, runs only up to the mean (= 1 owing to normal-
ization), E might appear to be insensitive to the variable’s distribution
above the mean. However, this is not true because we see thatRN
0 ð1� xÞf xð Þdx ¼ 1� m ¼ 0. Hence, by influencing the
location of the mean (before normalization), the upper part of the
distribution influences the upper end of the lower part and, thereby,
the result of the integration of the normalized lower part.
More important is the outcome of the general analysis of E

performed in the present paper. For any symmetrical distribution,
including the Gaussian normal distribution, I showed that E can be
predicted with little error by σ, that is, by 1–σ/2 (see inequality(7) and
Figure 2). Moreover, as some NGS methods entail positively skewed
coverage data (see Figure 4, Ernani et al.13 and Lam et al.14), I
examined the evenness score of the log-normal distribution, which is
the typical distribution of positively skewed results of biological
measurements:6 For a rather wide range of σ(⩽3), E was found to
be predictable by e− σ*/2 with σ*2= ln(σ2+1) (see Equation (10) and

Figure 4 Fitting log-normal distributions to exome data. (a) Variant coverage distribution of an individual exome (‘son’) that can be downloaded from Glusman
et al.17 (b) Average coverage of each variant position on chromosome 18 that is covered above threshold (47× ) in all 4300 European American samples of
the Exome Variant Server (http://evs.gs.washington.edu/EVS, Jan 2016). For the moments and scores of the normalized coverage as discussed in the present
article, distribution (a) yields σ=1.006, e− σ=0.366, E=0.657, 1–σ/2=0.497, 1–σ2/2=0.494, e− σ*/2=0.658 and 1–F(e−1)=0.724, and (b) yields
σ=0.456, e− σ=0.634, E=0.827, 1–σ/2=0.772, 1–σ2/2=0.896, e− σ*/2=0.804 and 1–F(e−1)=0.965. Thus the evenness score E of realistic data is well
approximated by e− σ*/2 as in Equation (10) while 1–F(e−1) as in Equation (11) is not sufficient yet. For (b) where the deviation from symmetry is relatively
small, even inequality(7) yields a good approximation with 0.5(1–σ/2+1–σ2/2)=0.834. Moreover, panels (a) and (b) show that, for the characterization of
realistic data, the score e− σ exploits a much larger part of its range than E. (See Supplementary Figure S2 for exome data that fit the log-normal distribution
less perfectly while the relations of the moments and scores are still quite similar to here.)
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Figure 3b). In these cases, E also does not seem to provide much
information that is not easily derivable from σ. An advantage of E was
revealed only for cases with very large coefficient of variation (that is,
σ of normalized data ⩾ 2.5), as it then satisfyingly and directly
predicts the fraction of targets with sufficiently high coverage (see
Equation (11) and Figure 3b), whereas this fraction cannot be easily
estimated directly from σ.
Some might argue that the evenness score has the advantage of

being a score between 0 and 1 (0% and 100%). However, a simple
score with that quality can also be devised using σ, namely as e− σ,
which is 1 (that is, 100%) for absolutely homogeneous coverage and
approaches 0 for inhomogeneous coverage. The major difference
between E and e− σ is given by the rate of approaching 0 as can be seen
in Figure 3b. There, E still indicates an evenness of 0.37= 37% if
F (0.2)= 0.5 with 50% of the targets having a coverage of at most 0.2
(that is, of at most 20× if the mean is 100× ), while e− σ is already
down to a level of e− 5= 0.007= 0.7%. If such NGS outputs were
unacceptable due to insufficient coverage of too many targets, E would
not exploit its full range (0–1) for the evaluation of the acceptable
NGS outputs. Indeed, the minimal E values of published NGS outputs
as calculated in Mokry et al.,1 Lelieveld et al.3 and this present paper
are still as large as 0.62, 0.68 and 0.66, respectively, while e− σ goes
down to 0.37 (see Figure 4). On the other hand, if outputs with 50%
of the targets having a coverage of at most 20% of the mean coverage
were acceptable, E would have the advantage to preserve some of its
range for their quantitative evaluation.
Dealing with log-normal distributions, it might also be worth

considering the analog of the standard deviation of a Gaussian normal
distribution, that is, the ‘multiplicative standard deviation’ σ* as
recommended by Limpert et al.6 (note that the naming of the
variables is different in Limpert et al.6). It is one of the two form
parameters in Equations (8 and 9). In case of empirical data, it can be
calculated as the standard deviation of the natural logarithm of the
random variable. In Figure 3b, the score e− σ* is presented as a possible
tool for the quantitative evaluation of the homogeneity of NGS
outputs. It may provide a compromise between e− σ and E. However,
the ‘multiplicative standard deviation’ does not yet seem to be in
common use and the NGS community may therefore hesitate to take
it into consideration.
In summary, the general evaluation presented in this paper reveals

that in most circumstances the evenness score E of a NGS output can
be predicted quite well by the standard deviation σ of the normalized
data (that is, by the coefficient of variation σ/μ in case of non-

normalized data). Only if σ is very large (⩾2.5μ), does E have the
advantage of directly reflecting the fraction of sufficiently covered
targets. The general relation between E and σ set out here should also
apply to other scientific fields that develop a parameter equivalent to E
for their statistics.
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