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Systematic molecular analyses of SHOX in Japanese
patients with idiopathic short stature and Leri-Welll
dyschondrosteosis

Hirohito Shimal2, Toshiaki Tanaka3, Tsutomu Kamimaki%, Sumito Dateki’, Koji Muroya6, Reiko Horikawa’,
Junko Kanno®, Masanori Adachi®, Yasuhiro Naiki’, Hiroyuki Tanaka®, Hiroyo Mabel?, Hideaki Yagasaki“,
Shigeo Kure3, Yoichi Matsubara®!2, Toshihiro Tajima13’22, Kenichi Kashimada!?4, Tomohiro Ishiil®,

Yumi Asakura®, Ikuma Fujiwaralﬁ, Shun Soneda!?, Keisuke Nagasakils, Takashi Hamajima19,

Susumu Kanzaki??, Tomoko Jinno!, Tsutomu Ogata21, Maki Fukami! and The Japanese SHOX study group23

The etiology of idiopathic short stature (ISS) and Leri-Weill dyschondrosteosis (LWD) in European patients is known to include
SHOX mutations and copy-number variations (CNVs) involving SHOX and/or the highly evolutionarily conserved non-coding

DNA elements (CNEs) flanking the gene. However, the frequency and types of SHOX abnormalities in non-European patients and
the clinical importance of mutations in the CNEs remains to be clarified. Here, we performed systematic molecular analyses of
SHOX for 328 Japanese patients with ISS or LWD. SHOX abnormalities accounted for 3.8% of ISS and 50% of LWD cases.
CNVs around SHOX were identified in 16 cases, although the ~47 kb deletion frequently reported in European patients was
absent in our cases. Probably damaging mutations and benign/silent substitutions were detected in four cases, respectively.
Although CNE-linked substitutions were detected in 15 cases, most of them affected poorly conserved nucleotides and were
shared by unaffected individuals. These results suggest that the frequency and mutation spectrum of SHOX abnormalities are
comparable between Asian and European patients, with the exception of a European-specific downstream deletion. Furthermore,
this study highlights the clinical importance and genetic heterogeneity of the SHOX-flanking CNVs, and indicates a limited
clinical significance of point mutations in the CNEs.
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INTRODUCTION dislocation of the distal ulna, which can result in wrist pain,
SHOX (NM_000451.3) is located in the short arm pseudoautosomal  deformation and/or limited joint mobility.>3 Genetic defects under-
region of the sex chromosomes (PAR1), and encodes a homeobox-  lying SHOX haploinsufficiency include several mutations in the coding
containing transcription factor that plays a critical role in skeletal region and various copy-number variations (CNVs) in PAR1.24-!!
growth.! SHOX haploinsufficiency leads to idiopathic short stature  The ISS/LWD-associated CNVs are predicted to involve SHOX exons
(ISS; OMIM #300582) without skeletal malformations and Leri-Weill ~ and/or cis-acting enhancers. Although the precise positions of the
dyschondrosteosis (LWD; OMIM  #127300) characterized by SHOX enhancers remain to be determined, they likely reside within
Madelung deformity.'~> Madelung deformity is a cluster of anatomical ~ the highly evolutionarily conserved non-coding DNA elements
changes in the wrist including bowing of the radius and dorsal (CNEs) around the gene.'®'* Previous studies have identified seven
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CNEs (CNE-5, CNE-3, CNE-2, CNE4, CNES5, evolutionarily
conserved region (ECR) 1 and evolutionarily conserved sequence
(ECS) 4/CNEY) that exert in vitro or in vivo cis-regulatory activity.'%-14
In vitro assays confirmed physical interaction between these CNEs and
the SHOX promoter.'®1

So far, mutation screening and copy-number analyses of SHOX
have been performed mostly for patients of European origin.*~1% 16-20
Previous that SHOX haploinsufficiency is
primarily caused by submicroscopic CNVs in PARI, and accounts
for 2-17% of ISS cases and 35-100% of LWD cases.*"1%1620 However,
the applicability of these findings to non-European populations
remains unclear. For example, although a ~47kb deletion in the

studies indicated

SHOX downstream region was frequently identified in European
pattients,w’w’20 it is unknown whether this CNV is shared by
patients of other ethnicities. More importantly, there is no report of
sequence analysis of the CNEs in the patients with ISS or LWD. Thus,
the clinical importance of point mutations in the known CNEs has yet
to be studied. To address these unsolved issues, we performed
systematic molecular analysis of SHOX in a large cohort of Japanese
patients.

MATERIALS AND METHODS
Subjects
The study was approved by the Institutional Review Board Committee at the
National Center for Child and Development, and performed after obtaining
informed consent from the participants or their parents.

The study group consisted of 328 Japanese patients with short stature
(164 males and 164 females; aged 0.5-17.9 years). The patients satisfied the
following conditions: (i) referred to our pediatric endocrinology clinics between

March 2013 and November 2015 for evaluation of short stature; (ii) short
stature with standard deviation scores of < — 2.0; (iii) no chronic diseases, such
as growth hormone deficiency, congenital heart disease, achondroplasia or
thyroid disease that may affect growth; and (iv) lack of cytogenetically
detectable chromosomal abnormalities. The patients underwent radiological
examinations of the hand. We examined the presence or absence of Madelung
deformity-compatible features including narrowing of the ulnar portion of the
distal radial physis, anterior bowing of the radial shaft and dorsal subluxation of
the ulnar head.’> Of the 328 patients, 16 with radiologically recognizable
Madelung deformity were diagnosed with LWD, whereas the remaining 312
were diagnosed with ISS. Four patients were included from our previous
study.?! As controls, we used genomic DNA samples obtained from 100 healthy
Japanese adults with normal height (50 males and 50 females).

Copy-number analysis

All patients were subjected to copy-number analysis. Genomic DNA was
extracted from peripheral leukocytes. CNVs in PAR1 were analyzed by
multiplex ligation-dependent probe amplification using a commercially
available kit (SALSA P018-G1, MRC-Holland, Amsterdam, Netherlands) and
further characterized by array-based comparative genomic hybridization using a
custom-made microarray (8 X 60 k format, Agilent Technologies, Santa Clara,
CA, USA). To exclude non-pathogenic variations, we referred to the Database
of Genomic Variants (http://projects.tcag.ca/variation/).

Sequence analysis

Of the 312 patients with no pathogenic CNVs, 309 (300 ISS and 9 LWD) were
subjected to sequence analysis of SHOX exons; 3 patients were excluded from
this analysis because of insufficient amounts of DNA samples. We also carried
out sequence analysis of the 7 CNEs for 83 patients (76 ISS and 7 LWD) whose
DNA samples were sufficient for this experiment.
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Figure 1 Copy-number variations (CNVs) identified in cases 1-16. The upper panel shows the names of multiplex ligation-dependent probe amplification
(MLPA) probes. Probes of the SHOX exons are shaded in purple, and those of the putative enhancer regions, that is, highly evolutionarily conserved non-
coding DNA elements (CNEs), evolutionally conserved region (ECR), or evolutionally conserved sequence (ECS), are shaded in blue or yellow. Probes in the
pseudoautosomal region 1 are indicated with an arrow. The green and red lines depict copy-number loss and gain, respectively. The dotted lines indicate the

copy-number unknown regions. p-ter: short arm telomere; cen, centromere.
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DNA fragments corresponding to the target regions were amplified by
multiplex-PCR or by using the Haloplex system (Agilent Technologies, Santa
Clara, CA, USA) and sequenced on a MiSeq next-generation sequencer
(Ilumina, San Diego, CA, USA). The highly polymorphic oligonucleotide
repeats in the CNEs were excluded from sequence analysis. Nucleotide changes
indicated by next-generation sequencing were confirmed by the Sanger
method. Primer sequences are available on request. Nucleotide substitutions
whose allelic frequency in the databases (dbSNP, http://www.ncbi.nlm.nih.gov/
snp/; or 1000 Genome Browser, http://www.ncbi.nlm.nih.gov/variation/tools/
1000genomes/) was more than 0.05 were excluded as common
polymorphisms.

The functional outcomes of missense substitutions were predicted by in silico
analysis using PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) and SIFT
(http://sift.jevi.org/). To examine the population frequency of exonic
substitutions, we referred to the Exome Aggregation Consortium Browser
(http://exac.broadinstitute.org/) and the Human Genetic Variation Browser
(http://www.genome.med.kyoto-u.ac.jp/SnpDB). To evaluate the population
frequency of novel substitutions, we analyzed DNA samples of control
individuals.

To assess the functional significance of nucleotide changes in the CNEs, we
examined whether these substitutions were located within the putative
enhancer sequences. We referred to ENCODE Broad Chromatin State
Segmentation in the UCSC browser (http://genome.ucsc.edu/). The
evolutionary conservation of the affected nucleotides was analyzed using the
UCSC browser.

a 2

Cases 2tl 22 ’11 ;‘?ét‘l 9 23;t t24 30

RESULTS

Copy-number analysis

Submicroscopic CNVs in PAR1 were identified in 16 cases (cases
1-16; Figure 1 and Supplementary Figures 1 and 2). These CNVs
consisted of 11 deletions and 5 duplications. The deletion in case 1
extended beyond PARI, whereas CNVs in the remaining cases were
located within PAR1. The deletion in case 9 affected a genomic
interval downstream of the known CNEs. The ~47kb deletion
common in European patients,'®!>?% was absent in our cases. The
breakpoints of the CNVs in cases 2, 3, 5, 12 and 14 were located
within or close to repetitive sequences (Supplementary Figure 2).

Sequence analysis
Sequence analysis of SHOX identified eight intragenic substitutions in
eight cases (cases 17-24; Table 1 and Figure 2). Of these, five were
missense substitutions, and three were silent (synonymous) changes.
These eight substitutions were absent or extremely rare in the general
population. Four of the five missense substitutions were assessed as
‘probably damaging’, whereas p.Ser46Phe in case 21 was scored as
‘benign’. The substitutions in cases 17-19 were located within the
homeobox.

Sequence analysis of the known CNEs detected 11 substitutions in
15 cases (cases 25-39; Table 1 and Figure 2). Of these, five were rare
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Figure 2 Nucleotide substitutions identified in cases 17-39. (a) Genomic structure of SHOX and its flanking region. Positions refer to the Human Genome
(hg 19; NCBI Build 37). The white and purple boxes indicate the untranslated and translated exons, respectively. The striped boxes depict the homeobox.
The yellow and light blue boxes denote the putative upstream and downstream enhancer regions, respectively. Probably damaging mutations and benign/
silent substitutions are indicated by dark blue and green arrows, respectively. Substitutions in the putative enhancer regions are depicted by light blue
arrows. (b) Electrochromatographs of the substitutions. Mutated nucleotides are indicated by arrows. Substitutions indicated by a, b, and ¢ were identified in

multiple patients. p-ter: short arm telomere; cen, centromere.
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polymorphisms, and the others were first identified herein. Most of
the novel substitutions were shared by the control individuals.
Substitutions in CNE-5 and CNE5 resided within putative
enhancer sequences (Supplementary Figure 3). Most of the altered
nucleotides were not highly conserved among species (Supplementary
Figure 4).

Clinical features of patients with SHOX abnormalities

Cases 1-16 with CNVs comprised ten ISS and six LWD patients,
whereas cases 17-20 with probably damaging mutations included
two ISS and two LWD patients (Table 2). Thus, apparent

Molecular basis of SHOX haploinsufficiency
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and eight of 16 (50%) LWD patients. Cases with benign or
silent substitutions (cases 21-24) and CNE-linked substitutions
(cases 25-39) were all ISS.

DISCUSSION

Systematic molecular analysis identified probably pathogenic SHOX
abnormalities in 3.8 and 50% of Japanese ISS and LWD cases,
respectively. These results indicate that the frequency of SHOX
haploinsufficiency is comparable between Japanese and European
patients. On the other hand, none of our patients carried the well-
known ~ 47 kb downstream deletion,!%:19:20 indicating that this CNV is

SHOX abnormalities accounted for 12 of 312 (3.8%) ISS patients a European-specific founder mutation. The lack of SHOX
Table 2 Clinical and molecular findings of patients with SHOX abnormalities
Clinical Affected SHOX
Cases Sex Age diagnosis Stature (SDS) Additional clinical features Genetic defects exon Affected CNE
1 F N.D. LWD N.D. N.D. Deletion All All
2 F 6.9 LWD -3.6 None Deletion All CNE-5, CNE-3, and CNE-2.
3 F 0.5 LWD -1.7 None Deletion Exons 1-2 CNE-5, CNE-3, and CNE-2.
4 M 4.0 ISS -5.0 Macrocephalus Deletion None CNE-5, CNE-3, and CNE-2.
5 F 10.8 LWD -1.4 cv Deletion All CNE-3, CNE-2. CNE4, CNE5, ECR1
and ECS4/CNE9
6 F 4.0 ISS -3.1 None Deletion Exon 6b CNE4
7 M 16.0 LWD -3.0 None Deletion None CNE4, CNE5, ECR1 and ECS4/CNE9
8 F 11.0 ISS -2.3 None Deletion None CNE4
9 F11.1 LWD -1.4 None Deletion None Downstream region
10 M 6.7 ISS -2.3 None Deletion Exon 1 None
11 M 6.3 ISS -4.1 None Deletion Exon 1 None
12 M 9.5 ISS -2.5 None Duplication Exons 1-3 CNE-5, CNE-3, and CNE-2.
13 F 1.9 ISS -2.7 None Duplication All CNE-2, CNE4 and CNE5
14 M 3.2 ISS -29 None Duplication All CNE4, CNE5, ECR1 and CNE9/ECS4
15 F 46 ISS -2.4 None Duplication None CNE9/ECS4
16 M 6.4 ISS -2.0 None Duplication None Downstream region
17 F 8.6 LWD -2.6 Webbed neck, CV Missense substitution Exon 3 None
18 F 44 ISS -3.2 Mild CV Missense substitution Exon 3 None
19 F 55 LWD -2.5 Mesomelia, CV Missense substitution Exon 3 None
20 M 9.8 ISS -2.1 None Missense substitution Exon 6 None
21 M 10.8 ISS -2.1 None Missense substitution Exon 2 None
22 F 32 ISS -3.5 None Silent substitution Exon 3 None
23 M 3.5 ISS -2.3 None Silent substitution Exon 5 None
24 F 29 ISS -3.0 cv Silent substitution Exon 5 None
25 F 53 ISS -2.8 None Substitution in CNE ~ None CNE-5 and CNE-2
26 F 52 ISS -3.4 None Substitution in CNE ~ None CNE-5 and CNE5?
27 M 49 ISS -3.2 None Substitution in CNE ~ None CNE5P
28 M 3.0 ISS -4.7 Macrocephalus Substitution in CNE ~ None CNE5
29 F 46 ISS -2.3 None Substitution in CNE ~ None CNEb
30 F10.5 ISS -2.5 None Substitution in CNE ~ None CNE5
31 M  14.0 ISS -2.6 N.D. Substitution in CNE ~ None CNE5
32 F 6.1 ISS -25 None Substitution in CNE ~ None CNEb
33 M 99 ISS -2.9 None Substitution in CNE ~ None CNE5
34 F 10.0 ISS -3.6 Micrognathia, high-arched Substitution in CNE ~ None CNEb
palate
35 F 20 ISS -35 Prominent forehead Substitution in CNE ~ None CNE5
36 M 6.0 ISS -3.0 None Substitution in CNE ~ None CNE5
37 M 5.6 ISS -29 Blepharoptosis Substitution in CNE ~ None ECR1
38 M 16.8 ISS -2.6 None Substitution in CNE ~ None ECR1
39 F N.D. ISS N.D. None Substitution in CNE ~ None CNE9/ECS4

Abbreviations: CNE, highly conserved non-coding DNA elements; CV, cubitus valgus; ECR, evolutionarily conserved region; ECS, evolutionarily conserved sequence; F, female; ISS, idiopathic short

stature; LWD, Leri-Weill dyschondrosteosis; M male; N.D., no data.
aCase 26 carried two nucleotide alterations in CNES.
bCase 27 carried three nucleotide alterations in CNES5.
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abnormalities in seven LWD patients provides further evidence for the
allelic heterogeneity of LWD. As mutations in NPR2, a causative gene
of Maroteaux-type acromesomelic dysplasia, have recently been
identified in patients with LWD-compatible clinical features,??
such mutations may be present in some of our patients with normal
SHOX.

Submicroscopic CNVs in PARI were identified in cases 1-16. Our
results highlight the importance of PARI-linked CNVs as a cause of
SHOX haploinsufficiency. Furthermore, the results for case 9 support
the hypothesis that a hitherto unidentified SHOX enhancer resides
within the ~500kb region ~300kb downstream of the exons.?>**
Likewise, the results of case 16 are consistent with the recently
proposed notion that the duplications in the downstream region of
the known CNEs can underlie 1SS and LWD.?> The high frequency
and heterogeneity of CNVs in cases 1-16 may reflect the genomic
instability of PARI; the recombination rate of PARI during male
meiosis is ~ 17-times higher than the genomic average.?® Indeed, the
breakpoints of cases 2, 3, 5, 12 and 14 were located close to or
within repetitive sequences, which provide substrates for non-allelic
homologous recombination.?” While the breakpoints of cases 1-16
were widely distributed in PAR1 and relatively frequent in the
genomic regions adjacent to SHOX, this is consistent with the
occurrence of male-specific crossover throughout PAR1 with hotspots
in the ~ 0.8 Mb genomic interval around SHOX.?

Probably damaging intragenic mutations were detected in cases
17-20. These data confirm the results of the European studies that the
pathogenic point mutations in SHOX are widely distributed in
the coding region and relatively common in the homeobox.>?® On
the other hand, the pathogenicity of four benign/silent substitutions in
SHOX exons and ten substitutions in the CNEs remains unknown. As
three of the ten substitutions in the CNEs resided within putative
enhancer sequences, these substitutions may disturb SHOX expression.
However, most of the affected nucleotides were not highly conserved
among species, raising a question of the functional significance of the
substitutions. Furthermore, most of these substitutions were shared by
control individuals. Our data imply that the point mutations in the
known CNEs account for only a minor fraction of the etiology of
SHOX haploinsufficiency, if any. As additional SHOX enhancers are
likely to reside in PAR1,2?* sequence analysis of these novel enhancer
regions is needed.

In summary, our results indicate that the frequency and mutation
spectrum of SHOX abnormalities are comparable between Asian and
European patients, with the exception of a European-specific
downstream deletion. Furthermore, this study highlights the clinical
significance and genetic heterogeneity of PARI-linked CNVs, and
implies a limited role of CNE-linked mutations in the etiology of ISS
and LWD.
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